Advertisement

Proteins and Amino Acids from Thermophilic Microorganisms: Current Research Trends and Applications

  • Jujjavarapu Satya Eswari
  • Swasti Dhagat
  • Ramkrishna Sen
Chapter

Abstract

Thermophilic microorganisms synthesize macromolecules with intrinsic thermostability, which does not depend upon any stabilizing factors. Thermophilic organisms survive as a result of the interaction of many mechanisms, namely, rapid growth toward stabilization, more stable membrane, etc. The chief stabilizing factor for survival of thermophile is the heat stability of cellular proteins.

References

  1. Arnold FH, Wintrode PL, Miyazaki K, Gershenson A (2001) How enzymes adapt: lessons from directed evolution. Trends Biochem Sci 26(2):100–106CrossRefPubMedPubMedCentralGoogle Scholar
  2. Boutz DR, Cascio D, Whitelegge J, Perry LJ, Yeates TO (2007) Discovery of a thermophilic protein complex stabilized by topologically interlinked chains. J Mol Biol 368(5):1332–1344CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bräsen C, Urbanke C, Schönheit P (2005) A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. FEBS Lett 579(2):477–482CrossRefPubMedPubMedCentralGoogle Scholar
  4. Cacciapuoti G, Porcelli M, Bertoldo C, De Rosa M, Zappia V (1994) Purification and characterization of extremely thermophilic and thermostable 5′-methylthioadenosine phosphorylase from the archaeon Sulfolobus solfataricus. Purine nucleoside phosphorylase activity and evidence for intersubunit disulfide bonds. J Biol Chem 269(40):24762–24769PubMedPubMedCentralGoogle Scholar
  5. Cacciapuoti G, Fuccio F, Petraccone L, Del Vecchio P, Porcelli M (2012) Role of disulfide bonds in conformational stability and folding of 5′-deoxy-5′-methylthioadenosine phosphorylase II from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochim Biophys Acta Proteins Proteomics 1824(10):1136–1143CrossRefGoogle Scholar
  6. Cambillau C, Claverie J-M (2000) Structural and genomic correlates of hyperthermostability. J Biol Chem 275(42):32383–32386CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chan C-H, Yu T-H, Wong K-B (2011) Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One 6(6):e21624CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dahiyat BI, Sarisky CA, Mayo SL (1997) De novo protein design: towards fully automated sequence selection. J Mol Biol 273(4):789–796Google Scholar
  9. de Champdoré M, Staiano M, Rossi M, D’Auria S (2007) Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 4(13):183–191CrossRefGoogle Scholar
  10. Del Vecchio P, Elias M, Merone L et al (2009) Structural determinants of the high thermal stability of SsoPox from the hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 13(3):461–470CrossRefPubMedPubMedCentralGoogle Scholar
  11. Eijsink VG, Gåseidnes S, Borchert TV, van den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22(1):21–30CrossRefPubMedPubMedCentralGoogle Scholar
  12. Farias ST, Bonato M (2003) Preferred amino acids and thermostability. Genet Mol Res 2(4):383–393PubMedPubMedCentralGoogle Scholar
  13. Fukuchi S, Nishikawa K (2001) Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J Mol Biol 309(4):835–843CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garg M (n.d.) Glutamic acid: history, production and uses (with diagram). Retrieved August 27, 2018, from http://www.biologydiscussion.com/industrial-microbiology-2/glutamic-acid-history-production-and-uses-with-diagram/55763
  15. Haney PJ, Badger JH, Buldak GL et al (1999) Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proc Natl Acad Sci USA 96(7):3578–3583CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hendsch ZS, Tidor B (1994) Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci 3(2):211–226CrossRefPubMedPubMedCentralGoogle Scholar
  17. Herigemblong (2018) Fermentation process flow chart awesome industrial production of L lysine by fermentation. Retrieved August 27, 218, from http://dailyrevshare.com/fermentation-process-flow-chart/fermentation-process-flow-chart-awesome-industrial-production-of-l-lysine-by-fermentation/
  18. Ingram-Smith C, Smith KS (2006) AMP-forming acetyl-CoA synthetases in Archaea show unexpected diversity in substrate utilization. Archaea 2(2):95–107CrossRefGoogle Scholar
  19. Karshikoff A, Ladenstein R (2001) Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends Biochem Sci 26(9):550–557CrossRefGoogle Scholar
  20. Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308(5723):857–860CrossRefPubMedPubMedCentralGoogle Scholar
  21. Kumar S, Tsai C-J, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13(3):179–191CrossRefGoogle Scholar
  22. Laksanalamai P, Maeder DL, Robb FT (2001) Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic Archaeon Pyrococcus furiosus. J Bacteriol 183(17):5198–5202CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lee C-F, Makhatadze GI, Wong K-B (2005) Effects of charge-to-alanine substitutions on the stability of ribosomal protein L30e from Thermococcus celer. Biochemistry 44(51):16817–16825CrossRefGoogle Scholar
  24. Luo H, Robb FT (2011) Thermophilic protein folding systems. In: Extremophiles handbook, Springer, Tokyo/Berlin, p 583–599Google Scholar
  25. Malakauskas SM, Mayo SL (1998) Design, structure and stability of a hyperthermophilic protein variant. Nat Struct Mol Biol 5(6):470–475CrossRefGoogle Scholar
  26. Mamat B, Roth A, Grimm C et al (2002) Crystal structures and enzymatic properties of three formyltransferases from archaea: environmental adaptation and evolutionary relationship. Protein Sci 11(9):2168–2178CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matthews BW (1993) Structural and genetic analysis of protein stability. Annu Rev Biochem 62(1):139–160CrossRefGoogle Scholar
  28. Mayer F, Küper U, Meyer C et al (2012) AMP-forming acetyl coenzyme A synthetase in the outermost membrane of the hyperthermophilic crenarchaeon Ignicoccus hospitalis. J Bacteriol 194(6):1572–1581CrossRefPubMedPubMedCentralGoogle Scholar
  29. Melchionna S, Sinibaldi R, Briganti G (2006) Explanation of the stability of thermophilic proteins based on unique micromorphology. Biophys J 90(11):4204–4212CrossRefPubMedPubMedCentralGoogle Scholar
  30. Park K-H, Kim T-J, Cheong T-K et al (2000) Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the α-amylase family. Biochimt Biophys Acta Protein Struct Mol Enzymol 1478(2):165–185CrossRefGoogle Scholar
  31. Park J-T, Song H-N, Jung T-Y et al (2013) A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus. Biochim Biophys Acta Proteins Proteomics 1834(1):380–386CrossRefGoogle Scholar
  32. Petsko GA (2001) [34] Structural basis of thermostability in hyperthermophilic proteins, or “There’s more than one way to skin a cat”. Methods Enzymol 334:469–478CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pühler G, Weinkauf S, Bachmann L et al (1992) Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. EMBO J 11(4):1607CrossRefPubMedPubMedCentralGoogle Scholar
  34. Razvi A, Scholtz JM (2006) Lessons in stability from thermophilic proteins. Protein Sci 15(7):1569–1578CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rechsteiner M, Hoffman L, Dubiel W (1993) The multicatalytic and 26 S proteases. J Biol Chem 268:6065–6065PubMedPubMedCentralGoogle Scholar
  36. Reed CJ, Lewis H, Trejo E, Winston V Evilia C (2013) Protein adaptations in archaeal extremophiles. ArchaeaGoogle Scholar
  37. Ruepp A, Rockel B, Gutsche I, Baumeister W, Lupas AN (2001) The chaperones of the archaeon Thermoplasma acidophilum. J Struct Biol 135(2):126–138CrossRefPubMedPubMedCentralGoogle Scholar
  38. Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B (2006) Effective factors in thermostability of thermophilic proteins. Biophys Chem 119(3):256–270CrossRefPubMedPubMedCentralGoogle Scholar
  39. Sawle L, Ghosh K (2011) How do thermophilic proteins and proteomes withstand high temperature? Biophys J 101(1):217–227CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shuler ML, Kargi F (2002) Bioprocess engineering: basic concepts, 2nd edn. Prentice Hall, Upper SaddleGoogle Scholar
  41. Sieber V, Plückthun A, Schmid FX (1998) Selecting proteins with improved stability by a phage-based method. Nat Biotechnol 16(10):955–960CrossRefGoogle Scholar
  42. Szilágyi A, Závodszky P (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8(5):493–504CrossRefGoogle Scholar
  43. Taylor TJ, Vaisman II (2010) Discrimination of thermophilic and mesophilic proteins. BMC Struct Biol 10(1):S5CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tomazic SJ, Klibanov AM (1988) Mechanisms of irreversible thermal inactivation of Bacillus alpha-amylases. J Biol Chem 263(7):3086–3091PubMedGoogle Scholar
  45. Unsworth LD, van der Oost J, Koutsopoulos S (2007) Hyperthermophilic enzymes− stability, activity and implementation strategies for high temperature applications. FEBS J 274(16):4044–4056CrossRefGoogle Scholar
  46. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43CrossRefPubMedPubMedCentralGoogle Scholar
  47. Vihinen M (1987) Relationship of protein flexibility to thermostability. Protein Eng Des Sel 1(6):477–480CrossRefGoogle Scholar
  48. Vogt G, Argos P (1997) Protein thermal stability: hydrogen bonds or internal packing? Fold Des 2:S40–S46CrossRefGoogle Scholar
  49. Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269(4):631–643CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta Proteins Proteomics 1699(1):35–44CrossRefGoogle Scholar
  51. Wintrode PL, Arnold FH (2001) Temperature adaptation of enzymes: lessons from laboratory evolution. Adv Protein Chem 55:161–225CrossRefGoogle Scholar
  52. Woycechowsky KJ, Raines RT (2003) The CXC motif: a functional mimic of protein disulfide isomerase. Biochemistry 42(18):5387–5394CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zwickl P, Grziwa A, Puehler G et al (1992) Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 31(4):964–972CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jujjavarapu Satya Eswari
    • 1
  • Swasti Dhagat
    • 1
  • Ramkrishna Sen
    • 2
  1. 1.Department of BiotechnologyNational Institute of TechnologyRaipurIndia
  2. 2.Department of BiotechnologyIndian Institute of TechnologyKharagpurIndia

Personalised recommendations