Performance of Different PV Array Configurations Under Different Partial Shading Conditions

  • Haider Ibrahim
  • Nader AnaniEmail author
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 163)


In this paper, variations of the adverse effects of different partial shading patterns on the performance of a photovoltaic (PV) array with different array configurations is investigated using MATLAB/Simulink. The configurations considered were: Series-parallel (SP), total-cross-tied (TCT), bridged-linked (BL), and honey-comb (HC). Each configuration was investigated using a 4 × 4 PV array of KYOCERA KC200GT modules. The results show strong correlation between these effects and the configuration scheme of a PV array. It was evident that the TCT configuration outperformed all others schemes under various partial shading patterns, while the SP scheme exhibited the least performance. Quantitative results of the maximum power yield in each configuration were used as the prime indicator of performance.


PV array configurations Partial shading Maximum power Series-parallel Total-cross-tied Bridged-linked Honey-comb 


\( G \)

Solar irradiance (W/m2)

\( G_{STC} \)

Solar irradiance at standard test conditions (1000 W/m2)

\( I \)

Output current of a module (A)

\( I_{sc,STC} \)

Short circuit current (A) at standard test conditions

\( k \)

Boltzmann constant (1.381 × 10−23 J/K)

\( K_{v} \)

Thermal coefficient of the open-circuit voltage (V/°C)

\( K_{i} \)

Thermal coefficient of the short circuit current (A/°C)

\( N_{s} \)

Number of the series-connected cells per module

\( q \)

Electronic charge (−1.602 × 10−19 C)

\( T \)

Temperature of the PV cell (K)


Temperature of a module at standard test conditions (25 °C or 298.15 K)


Output voltage of PV module (V)

\( V_{oc,STC} \)

Open-circuit voltage of the PV module at standard test conditions (V)


  1. 1.
    Burns, P., Anani, N.: Modelling and simulation of photovoltaic arrays under varying conditions. In: 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester (2014)Google Scholar
  2. 2.
    Balasubramanian, I.R., Gansen, S.I., Chilakapati, N.: Impact of partial shading on the output power of PV systems under partial shading condtions. IET Power Electronics 7, 657–666 (2014)CrossRefGoogle Scholar
  3. 3.
    Moballegh, S., Jiang, J.J.: Modeling, prediction, and experimental validation of power peaks of PV arrays under partial shading condtions. IEEE Trans. Sustain. Energy 5(1), 293–300 (2014)CrossRefGoogle Scholar
  4. 4.
    Silvestre, S., Boronat, A., Chouder, A.: Study of bypass diodes configuration on PV modules. Appl. Energy 86(9), 1632–1640 (2009)CrossRefGoogle Scholar
  5. 5.
    Yang, H., Wang, H., and Wang, M.: Investigation of the Relationship between Reverse Current of Crystalline Silicon Solar Cells and Conduction of Bypass Diode. Hindawi Int. J. Photoenergy 2012 (2012)Google Scholar
  6. 6.
    Wang, Y.J., Lin, S.S.: Analysis of a partially shaded PV array considering different module connection schemes and effects of bypass diodes. In: International Conference & Utility Exhibition on Power and Energy Systems, Pattaya City, Thailand (2011)Google Scholar
  7. 7.
    Picault, D., Raison, B., Bacha, S., De La Casa, J., Aguilera, J.: Forecasting photovoltaic array power production subject to mismatch losses. Solar Energy 84(7), 1301–1309 (2010)CrossRefGoogle Scholar
  8. 8.
    Gao, L., Dougal, R.A., Liu, S., Iotova, A.P.: Parallel—Connectd solar PV system to address partial and rapidly fluctuating shadow conditions. IEEE Trans. Indus. Elect. 56(5), 148–1556 (2009)Google Scholar
  9. 9.
    Ramos-Paj, C., Bastida, J., Saavedra-Monte, A., Guinjoan-Gispert, F., Goez, M.: Mathematica model of total cross tied PV arrays in mismatching conditions. In: 4th Colombian Workshop on Circuits and Systems, Barranquilla (2012)Google Scholar
  10. 10.
    Humada, A.M., Herwan Bin Sulaiman, M., Hojabri, M., Hamada, H.M., Ahmed, M.N.: A Review on Photovoltaic Array Behavior, Configuration Strategies and Models Under Mismatch Conditions, vol. 11, pp. 4896–4903 (2016)Google Scholar
  11. 11.
    Ibrahim, H., Anani, N.: Evaluation of analytical methods for parameter extraction of PV modules. Energy Procedia 134, 69–78 (2017)CrossRefGoogle Scholar
  12. 12.
    Villalva, M.G., Gazoli, J.R., Filho, E.R.: omprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans Power Electronics 24(5), 1198–1208 (2009)CrossRefGoogle Scholar
  13. 13.
    Ibrahim, H., Anani, N.: Variations of PV module parameters with irradiance and temperature. Energy Procedia 134, 276–285 (2017)CrossRefGoogle Scholar
  14. 14.
    KC200GT.: KYOCERA Corporation. Available: Accessed 10 Mar 2019

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Engineering and DesignUniversity of Chichester, Bognor Regis CampusTech Park, Bognor RegisUK
  2. 2.Faculty of Science and EngineeringUniversity of Wolverhampton, Telford Innovation CampusShropshireUK

Personalised recommendations