The Role of Thermal Insulation in the Architecture of Hot Desert Climates

  • Carlos López-OrdóñezEmail author
  • Isabel Crespo Cabillo
  • Jaume Roset Calzada
  • Helena Coch Roura
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 163)


When we think about a dwelling’s thermal comfort, one of the first things that come to mind is to improve the envelope of the building, usually through the use of thermal insulation. However, in hot desert climate cities, where there is a great temperature oscillation, both daily and annually, the behavior of thermal insulation is not that clear. The city of Hermosillo follows a scattered pattern of urban growth. It has a hot desert climate, an annual mean temperature of 25 °C with an annual mean oscillation of 15 °C; during the summer season it presents extreme temperatures of 40–45 °C, annual precipitation of 387 mm and relative humidity of 43%. The most accepted architectonic strategies to improve the thermal behavior of buildings in hot desert climates are solar protection by shading, especially glazed surfaces, and the use of thermal insulation in the building’s envelope. This study aimed to assess the behavior of thermal insulation use in one storey dwellings. The results obtained show a reduction of energy loses through the envelope of the dwelling when more insulated, resulting in an interior thermal behavior not as favorable as was thought.


Thermal behavior Thermal insulation Hot desert climate architecture 



This research has been supported by CONACYT – SENER (CVU 469347) and by the Spanish Ministry of Economy under the MOET project, code BIA2016-7765-R.


  1. 1.
    Serra, R., Coch, H.: Arquitectura y Energía natural, 1st edn. Edicions UPC, Barcelona (1995)Google Scholar
  2. 2.
    Pellegrino, M., Simonetti, M., Chiesa, G.: Reducing thermal and energy consumption of Indian residential buildings: model validation by in-field measurements and simulation of low-cost interventions. Energy Build. 113, 145–158 (2016)CrossRefGoogle Scholar
  3. 3.
    Osman, M., Sevinc, H.: Adaptation of climate-responsive building design strategies and resilience to climate change in the hot/arid region of Khartoum, Sudan. Sustain. Cities Soc. 47, 101429 (2019)Google Scholar
  4. 4.
    Datagraver. Accessed 15 March 2019
  5. 5.
    Smart Growth America. Accessed 15 March 2019
  6. 6.
    Alalouch, C., Al-Saadi, S., AlWaer, H., Al-Khaled, K.: Energy saving potential for residential buildings in hot climates: the case of Oman. Sustain. Cities Soc. 46, 101442 (2019)CrossRefGoogle Scholar
  7. 7.
    Horizon 2020 The EU framework programme for research and innovation – energy. Accessed 18 March 2019
  8. 8.
    DesignBuilder Software Ltd. Accessed 15 March 2019
  9. 9.
    Marincic, I., Ochoa de la Torre, J., Alpuche, M., Duarte, A., Vargas, L., González, I., Barrera, I.: La construcción actual de viviendas en Hermosillo y su adecuación al clima por medios pasivos. In: XXXV Congreso Nacional de Energía Solar. ANES, pp. 183–193. ANES, Chihuahua (2011)Google Scholar
  10. 10.
    Marincic, I., Ochoa, J., Del Río, J.: Confort térmico adaptativo dependiente de la temperatura y la humedad. ACE Archit. City Environ. 7(20), 27–46 (2012)Google Scholar
  11. 11.
    López-Ordóñez, C., Crespo, I., Roset, J.: Urban space environmental conditions in hot-desert climate sprawl cities. In: II Congreso Internacional ISUF-H Zaragoza, pp. 117–128. Prensas de la Universidad de Zaragoza, Zaragoza (2018)Google Scholar
  12. 12.
    LEMA, Estación Meteorológica. Accessed 15 March 2019
  13. 13.
    Servicio Meteorológico Nacional. Accessed 2019/03/15
  14. 14.
    Oglyay, V.: Design with Climate. Bioclimatic Approach to Architectural Regionalism, 1st edn. Princeton University Press, New Jersey (1963)Google Scholar
  15. 15.
    Givoni, B.: Man, Climate and Architecture. Elsevier Science Ltd, Wisconsin (1969)Google Scholar
  16. 16.
    IMPLAN, Programa de Desarollo Metropolitano de Hermosillo. Accessed 15 March 2019
  17. 17.
    INEGI. Accessed 15 March 2019
  18. 18.
    Idris, Y., Mae, M.: Anti-insulation mitigation by altering the envelope layers’ configuration. Energy Build. 141, 186–204 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.AiEM, E.T.S. Arquitectura de Barcelona, Universitat Politècnica de Catalunya (UPC)BarcelonaSpain

Personalised recommendations