Advertisement

‘Zukunftsquartier’—On the Path to Plus Energy Neighbourhoods in Vienna

  • Jens LeiboldEmail author
  • Simon Schneider
  • Momir Tabakovic
  • Thomas Zelger
  • Daniel Bell
  • Petra Schöfmann
  • Nadja Bartlmä
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 163)

Abstract

This paper presents an approach to define and implement a ‘Zukunftsquartier’ (future neighbourhood) in the context of the densely populated city environment of Vienna, which is in line with the national energy targets 2050. The ‘Zukunftsquartier’ project explores the feasibility of plus energy neighbourhood concepts at four prospective project sites in Vienna. The case studies evaluate the potential of demand side management, innovative renewable energy systems including photovoltaic and near-surface geothermal energy by hourly energy balancing and are compared for the Austrian building code and ‘passive house’ construction standards. Due to the high floor space index of urban projects, all investigated concepts failed to achieve a positive energy balance, except theoretical variants with unfeasibly high PV utilization of virtually the entire roof and façade surfaces. To offset the unintended effect of plus energy being harder to achieve in a dense urban context, we propose a correction factor for the target energy balance of ‘plus energy’ buildings and neighbourhoods based on the floor space index. Together with a second energy balance adjustment, reflecting the prospective renewable energy system (RES) of Austria 2050, most ambitious variants (utilizing ground heat and moderate PV surfaces) achieved ‘plus energy’ standard for dense urban areas and life cycle costs compared to conventional realizations within 30 years.

Keywords

Plus energy Neighbourhoods Economic feasibility Density Life cycle costs 

Notes

Acknowledgements

The authors thankfully acknowledge the Austrian Research Promotion Agency (FFG) and the Austrian Federal Ministry of Mobility, Innovation and Technology for enabling this publication by funding the research project ‘Zukunftsquartier’ in the research programme ‘Stadt der Zukunft’.

References

  1. 1.
    Alham, M.H., Elshahed, M., Ibrahim, D.K., Abo El Zahab, E.E.D.: A dynamic economic emission dispatch considering wind power uncertainty incorporating energy storage system and demand side management. Renew. Energy 96, 800–811 (2016).  https://doi.org/10.1016/j.renene.2016.05.012CrossRefGoogle Scholar
  2. 2.
    Fellner, M., Zelger, T., Leibold, J., Huemer-Kals, V., Kleboth, A., Granzow, I., Fleischhacker, A.: Smart City MIKROQUARTIERE. Vienna (2018)Google Scholar
  3. 3.
    Gollner, C., Hinterberger, R., Noll, M., Meyer, S., Schwarz, H-G.: Booklet of positive energy districts in Europe. Preview (2019)Google Scholar
  4. 4.
    Iturriaga, E., Aldasoro, U., Terés-Zubiaga, J., Campos-Celador, A.: Optimal renovation of buildings towards the nearly Zero Energy Building standard. Energy, 160, 1101–1114 (2018).  https://doi.org/10.1016/j.energy.2018.07.023CrossRefGoogle Scholar
  5. 5.
    Jensen, S.Ø., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A., Engelmann, P., Reynders, G.: IEA EBC annex 67 energy flexible buildings. Energy Build. 155, 25–34 (2017).  https://doi.org/10.1016/j.enbuild.2017.08.044CrossRefGoogle Scholar
  6. 6.
    Koutra, S., Becue, V., Gallas, M.-A., Ioakimidis, C.S.: Towards the development of a net-zero energy district evaluation approach: a review of sustainable approaches and assessment tools. Sustain. Cities Soc. 39, 784–800 (2018).  https://doi.org/10.1016/j.scs.2018.03.011CrossRefGoogle Scholar
  7. 7.
    Österreich, E.E.: Energiewende 2013 – 2030 – 2050 (2015)Google Scholar
  8. 8.
    Partoll, M.: +ERS Plusenergieverbund Reininghaus Süd, Endbericht (2016)Google Scholar
  9. 9.
    Schneider, S., Bartlmä, N., Leibold, J., Schöfmann, P., Tabakovic, M., Zelger, T.: New system boundaries! Abolishing the efficiency paradigm. RealCorp Paper (2019)Google Scholar
  10. 10.
    Wu, J., Zhang, B., Jiang, Y., Bie, P., Li, H.: Chance-constrained stochastic congestion management of power systems considering uncertainty of wind power and demand side response. Int. J. Electr. Power Energy Syst. 107, 703–714 (2019).  https://doi.org/10.1016/j.ijepes.2018.12.026CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Jens Leibold
    • 1
    Email author
  • Simon Schneider
    • 1
  • Momir Tabakovic
    • 1
  • Thomas Zelger
    • 1
  • Daniel Bell
    • 1
  • Petra Schöfmann
    • 2
  • Nadja Bartlmä
    • 3
  1. 1.University of Applied Sciences Technikum ViennaViennaAustria
  2. 2.UIV Urban Innovation Vienna GmbHViennaAustria
  3. 3.IBR & IInstitute of Building Research & Innovation ZT GmbHViennaAustria

Personalised recommendations