Annotation of Biological Network of Fungus Saccharomyces cerevisiae Using Cytoscape in Systems Biology

  • Prashant Ankur JainEmail author
  • Ved Kumar Mishra
  • Satyam Khanna


Bioinformatics open software tool Cytoscape is worn for the visualizing and integrating gene expression of molecular interaction networks. Protein-protein interactions form the foundation for an enormous mainstream of cellular events, together with signal transduction and transcriptional regulation. It is implicit to swot analyze the interactions and communications among cellular macromolecules which are fundamental to the indulgent of biological systems. Interactions among proteins have been premeditated all the way during a number of elevated-throughput experiments. It has furthermore been predicted from side to side an assortment of computational process so as to leverage the immense quantity of sequence data which generate in the previous decade. We took into our approach an unfasten based software known as Cytoscape to integrate the biomolecular interaction networks among elevated throughput appearance data and shaped circular arrangement of a cell recitation over all genetic interactions. Circular arrangement of these biological complex pathways were grouped physically and were further categorized on the basis of starting point of their universal functions of indiscriminately selected IDs from SGD.


Cytoscape SGD Biological network BiNGO jActive 



The person responsible would like to express a gratitude to the Department of CBBI, JIBB, SHUATS, Allahabad, U.P., India, along with Dr. Satyam Khanna, Managing Director, and Rass Biosolution Private Limited, Kanpur, Uttar Pradesh (U.P.), India, who is a senior author contributing to this study and in also in supporting to arrange a vigorous and reasonable research ambience and support.


  1. Altman RB, Raychaudhuri S (2001) Whole-genome expression analysis: challenges beyond clustering. Curr Opin Struct Biol 11:340–347CrossRefGoogle Scholar
  2. Bell GW, Lewitter F (2006) Visualizing networks. Meth Enzymol 411:408–421. PMID.16939803CrossRefPubMedGoogle Scholar
  3. Boone C, Howard B, Andrews BJ (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8:437–449CrossRefGoogle Scholar
  4. Bowers PM, Matteo P, Mike JT, Joe F, Yeates TO, David E (2004) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5:R35CrossRefGoogle Scholar
  5. CajaMurcia F (2006) Red Espanola de Biología de Sistemas. Syst Biol 14(1):19–31Google Scholar
  6. Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, Yu L (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet 37:1147–1152CrossRefGoogle Scholar
  7. Dolinski K, Botstein D (2005) Changing perspectives in yeast research nearly a decade after the genome sequence. Genome Res 15:1611–1619CrossRefGoogle Scholar
  8. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95:14863–14868CrossRefGoogle Scholar
  9. Gavin AC, Bösche M, Krause R, Grandi P, Marzioch M (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147CrossRefGoogle Scholar
  10. Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science 287:1969–1973CrossRefGoogle Scholar
  11. Gilbert D (2005) Biomolecular interaction network database. Brief Bioinfor 6:194–198CrossRefGoogle Scholar
  12. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546CrossRefGoogle Scholar
  13. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sørensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183CrossRefGoogle Scholar
  14. Ideker T, Thorsson V, Siegel A, Hood L (2000) Testing for differentially-expressed genes by maximum likelihood analysis of microarray data. J Comput Biol 7:805–817CrossRefGoogle Scholar
  15. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signaling circuits in molecular interaction networks. Bioinformatics 18(suppl 1):5233–5240CrossRefGoogle Scholar
  16. Kanehisa M (2002) The KEGG database, Novartis found Symp, vol 247, pp 91–101; discussion 101–103, 119–128, 244–152Google Scholar
  17. Kerr MK, Churchill GA (2001) Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc Natl Acad Sci U S A 98:8961–8965CrossRefGoogle Scholar
  18. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664CrossRefGoogle Scholar
  19. Klauschen E, Angermann BR, Meier SM (2007) Understanding disease by mouse click: the promise and potential of computational approaches in systems biology. Clin Exp Immunol 149:424–429CrossRefGoogle Scholar
  20. Krogan NJ, Cagney G, Haiyuan Y, Zhong G, Guo X, Ignatchenko A, Li J, Shuye P, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Samuel W, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, Onge PS, Ghanny S, Lam MHY, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, James Ingles C, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. J F Nature 440:637–643CrossRefGoogle Scholar
  21. Lodhi H, Muggleton S., (2004) Modeling metabolic pathways using stochastic logic programs based ensemble methods. Second international conference on computational methods in system biology (CMSB04), LNCS, pp 119–133CrossRefGoogle Scholar
  22. Parsons AB, Brost RI, Ding H (2004) Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat Biotechnol 22:62–69CrossRefGoogle Scholar
  23. Peri S, Navarro D, Kristiansen TZ, Amanchy R, Kumar-Sinha, Krishna S, Deshpande N, Pandey A (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371CrossRefGoogle Scholar
  24. Pilpel Y, Sudarsanam P, Church GM (2001) Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29:153–159CrossRefGoogle Scholar
  25. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E (2000) Genome-wide location and function of DNA binding proteins. Science 290:2306–2309CrossRefGoogle Scholar
  26. Rocke DM, Durbin B (2001) A model for measurement error for gene expression arrays. J Comput Biol 8:557–569CrossRefGoogle Scholar
  27. Shannon P, Markiel A, Ozier O (2003) Cytoscape: a software invironment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. PMC 403769CrossRefPubMedPubMedCentralGoogle Scholar
  28. Sharom JR, Bellows DS, Tyers M (2004) From large networks to small molecules. Curr Opin Chem Biol 8:81–90CrossRefGoogle Scholar
  29. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539CrossRefGoogle Scholar
  30. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A 96:2907–2912CrossRefGoogle Scholar
  31. Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813CrossRefGoogle Scholar
  32. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. J M Nature 403:623–627CrossRefGoogle Scholar
  33. Xenarios I, Łukasz S, Xiaoqun J, Duan PH, Sul-Min K, David E (2002) DIP: the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 30:303–305CrossRefGoogle Scholar
  34. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Prashant Ankur Jain
    • 1
    Email author
  • Ved Kumar Mishra
    • 1
  • Satyam Khanna
    • 2
  1. 1.Department of Computational Biology and Bioinformatics (CBBI)Jacob Institute of Biotechnology and Bioengineering (JIBB), Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS)AllahabadIndia
  2. 2.Computational Biology – Dry LaboratoryRass Biosolution Private LimitedKanpurIndia

Personalised recommendations