Impact of Microbial Genomics Approaches for Novel Antibiotic Target

  • Hemant Joshi
  • Akanksha Verma
  • Dharmendra Kumar SoniEmail author


Infectious diseases are life-threatening and may lead to high mortality and morbidity rates. The existing danger of an increase and spread of multidrug resistance pathogens is a global concern. Therefore, the designing of novel antibiotics and vaccine to control and eliminate the disease is an utmost requirement. Traditional approaches for screening vaccine and drug targets are time-consuming and have been unsuccessful in controlling the spread of infectious diseases due to several reasons such as altered antigenic diversity, altered virulence potential, and antimicrobial resistance in the infectious agent population. To overcome this problem, there has been a paradigm shift from the conventional to microbial genomics approaches, as the availability of complete genome sequence of pathogenic microorganisms and multiple isolates of the same species provides a wealth of information on nearly all the potential drug targets. Microbial genomics approaches open up new avenues to pursuit novel antimicrobial agents that are highly conserved in a range of microbes, essential for the survival of pathogens and absent in humans. In this chapter, we present an overview of the microbial genomics approaches such as pan-genomics, comparative genomics, functional genomics, structural genomics, transcriptomics, and proteomics used in the discovery and development of novel antibiotics.


Microbial genomics Antibiotics and vaccine target Pan-genomics Structural genomics Transcriptomics Proteomics 


  1. Angelichio MJ, Camilli A (2002) In vivo expression technology. Infect Immun 70:6518–6523PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ariel N, Zvi A, Makarova KS, Chitlaru T, Elhanany E, Velan B, Cohen S, Friedlander AM, Shafferman A (2003) Genome-based bioinformatics selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 71:4563–4579PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H (1998) A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16:851–856PubMedCrossRefGoogle Scholar
  4. Bhagwat AA, Bhagwat M (2008) Methods and tools for comparative genomics of foodborne pathogens. Foodborne Pathog Dis 5:487–497PubMedPubMedCentralCrossRefGoogle Scholar
  5. Boonjakuakul JK, Gerns HL, Chen YT, Hicks LD, Minnick MF, Dixon SE, Hall SC, Koehler JE (2007) Proteomic and immunoblot analyses of Bartonella quintana total membrane proteins identify antigens recognized by sera from infected patients. Infect Immun 75:2548–2561PubMedPubMedCentralCrossRefGoogle Scholar
  6. Centers for Disease Control and Prevention (CDC) (2018) Antibiotic resistance: a global threat.
  7. De Groot AS, Rivera DS, McMurry JA, Buus S, Martin W (2008a) Identification of immunogenic HLA-B7 “Achilles’ heel” epitopes within highly conserved regions of HIV. Vaccine 26:3059–3071PubMedCrossRefGoogle Scholar
  8. De Groot AS, Moise L, McMurry JA, Martin W (2008b) Epitope-based immunome derived vaccines: a strategy for improved design and safety. In: Falus A (ed) Clinical applications of immunomics. Springer, New York, pp 39–69Google Scholar
  9. Dormitzer PR, Ulmer JB, Rappuoli R (2008) Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol 26:659–667PubMedCrossRefGoogle Scholar
  10. Dorrell N, Mangan JA, Laing KG, Hinds J, Linton D, Al-Ghusein H, Barrell BG, Parkhill J, Stoker NG, Karlyshev AV, Butcher PD, Wren BW (2001) Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 11:1706–1715PubMedPubMedCentralCrossRefGoogle Scholar
  11. Eyles JE, Unal B, Hartley MG, Newstead SL, Flick-Smith H, Prior JL, Oyston PC, Randall A, Mu Y, Hirst S, Molina DM, Davies DH, Milne T, Griffin KF, Baldi P, Titball RW, Felgner PL (2007) Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7:2172–2183PubMedCrossRefPubMedCentralGoogle Scholar
  12. Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM (2001) Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl Acad Sci U S A 98:8821–8826PubMedPubMedCentralCrossRefGoogle Scholar
  13. Fukiya S, Mizoguchi H, Tobe T, Mori H (2004) Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J Bacteriol 186:3911–3921PubMedPubMedCentralCrossRefGoogle Scholar
  14. Giefing C, Meinke AL, Hanner M, Henics T, Bui MD, Gelbmann D, Lundberg U, Senn BM, Schunn M, Habel A, Henriques-Normark B, Ortqvist A, Kalin M, von Gabain A, Nagy E (2008) Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J Exp Med 205:117–131PubMedPubMedCentralCrossRefGoogle Scholar
  15. Giuliani MM, Adu-Bobie J, Comanducci M, Aricò B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834–10839PubMedPubMedCentralCrossRefGoogle Scholar
  16. Grandi G (2001) Antibacterial vaccine design using genomics and proteomics. Trends Biotechnol 19(5):181–188PubMedCrossRefPubMedCentralGoogle Scholar
  17. Grandi G (2006) Genomics and proteomics in reverse vaccines. Methods Biochem Anal 49:379–393PubMedPubMedCentralGoogle Scholar
  18. Grifantini R, Bartolini E, Muzzi A, Draghi M, Frigimelica E, Berger J, Ratti G, Petracca R, Galli G, Agnusdei M, Giuliani MM, Santini L, Brunelli B, Tettelin H, Rappuoli R, Randazzo F, Grandi G (2002) Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol 20:914–921PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kaushik DK, Sehgal D (2008) Developing antibacterial vaccines in genomic and proteomic era. Scand J Immunol 67:544–552PubMedCrossRefPubMedCentralGoogle Scholar
  21. Ling E, Feldman G, Portnoi M, Dagan R, Overweg K, Mulholland F, Chalifa-Caspi V, Wells J, Mizrachi-Nebenzahl Y (2004) Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 138:290–298PubMedPubMedCentralCrossRefGoogle Scholar
  22. Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D’Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Nardi-Dei V, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G (2005) Identification of a universal group B streptococcus vaccine by multiple genome screen. Science 309:148–150PubMedPubMedCentralCrossRefGoogle Scholar
  23. Målen H, Søfteland T, Wiker HG (2008) Antigen analysis of Mycobacterium tuberculosis H37Rv culture filtrate proteins. Scand J Immunol 67:245–252PubMedCrossRefGoogle Scholar
  24. Martin DR, Ruijne N, McCallum L, O’hallahan J, Oster P (2006) The VR2 epitope on the PorA P1. 7-2, 4 protein is the major target for the immune response elicited by the strain-specific group B meningococcal vaccine MeNZB. Clin Vaccine Immunol 13(4):486–491PubMedPubMedCentralCrossRefGoogle Scholar
  25. Meinke A, Henics T, Hanner M, Minh DB, Nagy E (2005) Antigenome technology: a novel approach for the selection of bacterial vaccine candidate antigens. Vaccine 23:2035–2041PubMedCrossRefGoogle Scholar
  26. Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417:642–645PubMedPubMedCentralCrossRefGoogle Scholar
  27. Moir DT, Shaw KJ, Hare RS, Vovis GF (1999) Genomics and antimicrobial drug discovery. Antimicrob Agents Chemother 43(3):439–446PubMedPubMedCentralCrossRefGoogle Scholar
  28. Moxon R, Rappuoli R (2002) Bacterial pathogen genomics and vaccines. Br Med Bull 62:45–58PubMedCrossRefGoogle Scholar
  29. Muzzi A, Masignani V, Rappuoli R (2007) The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discov Today 12:429–439PubMedCrossRefGoogle Scholar
  30. Nicola G, Abagyan R (2009) Structure-based approaches to antibiotic drug discovery. Curr Protoc Microbiol; Chapter 17:Unit 17.2Google Scholar
  31. Obert C, Sublett J, Kaushal D, Hinojosa E, Barton T, Tuomanen EI, Orihuela CJ (2006) Identification of a candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect Immun 74:4766–4777PubMedPubMedCentralCrossRefGoogle Scholar
  32. Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323PubMedCrossRefGoogle Scholar
  33. Pizza M, Scarlato V, Masignani V, Giuliani MM, Aricò B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820PubMedCrossRefPubMedCentralGoogle Scholar
  34. Prabakaran P, Dimitrov AS, Fouts TR, Dimitrov DS (2007) Structure and function of the HIV envelope glycoprotein as entry mediator, vaccine immunogen, and target for inhibitors. Adv Pharmacol 55:33–97PubMedCrossRefPubMedCentralGoogle Scholar
  35. Rappuoli R (2008) The application of reverse vaccinology, Novartis MenB vaccine developed by design. 16th International Pathogenic Neisseria Conference, Rotterdam, The Netherlands. Abstract, 81 p
  36. Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel J (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893PubMedPubMedCentralCrossRefGoogle Scholar
  37. Rodríguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Maggi T, Neumann A, Covre A, Telford JL, Grandi G (2006) Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 24:191–197PubMedCrossRefPubMedCentralGoogle Scholar
  38. Rolfs A, Montor WR, Yoon SS, Hu Y, Bhullar B, Kelley F, McCarron S, Jepson DA, Shen B, Taycher E, Mohr SE, Zuo D, Williamson J, Mekalanos J, Labaer J (2008) Production and sequence validation of a complete full length ORF collection for the pathogenic bacterium Vibrio cholerae. Proc Natl Acad Sci U S A 105:4364–4369PubMedPubMedCentralCrossRefGoogle Scholar
  39. Scarselli M, Giuliani MM, Adu-Bobie J, Pizza M, Rappuoli R (2005) The impact of genomics on vaccine design. Trends Biotechnol 23:84–91PubMedCrossRefPubMedCentralGoogle Scholar
  40. Seib KL, Dougan G, Rappuoli R (2009) The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet 5(10):e1000612PubMedPubMedCentralCrossRefGoogle Scholar
  41. Sette A, Fleri W, Peters B, Sathiamurthy M, Bui HH, Wilson S (2005) A roadmap for the immunomics of category A-C pathogens. Immunity 22:155–161PubMedCrossRefGoogle Scholar
  42. Shin GW, Palaksha KJ, Kim YR, Nho SW, Kim S, Heo GJ, Park SC, Jung TS (2007) Application of immunoproteomics in developing a Streptococcus iniae vaccine for olive flounder (Paralichthys olivaceus). J Chromatogr B Analyt Technol Biomed Life Sci 849:315–322PubMedCrossRefGoogle Scholar
  43. Stoevesandt O, Taussig MJ, He M (2009) Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 6:145–157PubMedCrossRefGoogle Scholar
  44. Talaat AM, Stemke-Hale K (2005) Expression library immunization: a road map for discovery of vaccines against infectious diseases. Infect Immun 73:7089–7098PubMedPubMedCentralCrossRefGoogle Scholar
  45. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637PubMedCrossRefGoogle Scholar
  46. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955PubMedPubMedCentralCrossRefGoogle Scholar
  47. Todd AE, Marsden RL, Thornton JM, Orengo CA (2005) Progress of structural genomics initiatives: an analysis of solved target structures. J Mol Biol 348:1235–1260PubMedCrossRefGoogle Scholar
  48. Vytvytska O, Nagy E, Blüggel M, Meyer HE, Kurzbauer R, Huber LA, Klade CS (2002) Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590PubMedCrossRefGoogle Scholar
  49. Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD (2007) Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:732–737PubMedPubMedCentralCrossRefGoogle Scholar
  50. Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hemant Joshi
    • 1
  • Akanksha Verma
    • 2
  • Dharmendra Kumar Soni
    • 3
    • 4
    Email author
  1. 1.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of BotanyMLKPG CollegeBalrampurIndia
  3. 3.Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR)Umeå UniversityUmeåSweden
  4. 4.Laboratory of Molecular Infection Medicine Sweden (MIMS)Umeå UniversityUmeåSweden

Personalised recommendations