Applications of Microarray-Based Technologies in Identifying Disease-Associated Single Nucleotide Variations

  • Sartaj Khurana
  • Sudeep Bose
  • Dhruv KumarEmail author


The analysis of a multitude of genes in one shot has been made possible with the introduction of microarrays to the scientific community. Microarrays are microscopic slides that are printed with thousands of tiny spots with each spot containing a specific nucleotide (known DNA). These nucleotides act as probes to detect the expression of the desired gene (mRNA). With growing scientific knowledge over the years, microarrays have found applications in a plethora of research specializations such as gene discovery, mutational analysis, detection of single nucleotide polymorphisms, identification and detection of microorganisms, and detection of clinical conditions such as cancer, heart diseases, neurological disorders, etc. Detection and diagnosis of such clinical conditions are now relatively easy with techniques such as microarrays, and timely therapeutic intervention is now no more a farfetched dream. Microarrays are these days being used to their full potential as elucidated by a variety of studies suggesting that the utility of microarrays will continue to grow in the forthcoming years as viable detection and identification methods.


Microarray SNPs CNVs Gene expression Mutational analysis 


  1. Andrilenas KK, Penvose A, Siggers T (2015) Using protein-binding microarrays to study transcription factor specificity: homologs, isoforms and complexes. Brief Funct Genomics 14:17–29PubMedCrossRefGoogle Scholar
  2. Aravind Kumar M, Singh V, Naushad SM, Shanker U, Lakshmi Narasu M (2018) Microarray-based SNP genotyping to identify genetic risk factors of triple-negative breast cancer (TNBC) in south Indian population. Mol Cell Biochem 442:1–10PubMedCrossRefGoogle Scholar
  3. Arbitrio M, di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, Tassone P, Tagliaferri P (2016) DMET (drug metabolism enzymes and transporters): a pharmacogenomic platform for precision medicine. Oncotarget 7:54028–54050PubMedPubMedCentralCrossRefGoogle Scholar
  4. Arenas J, Bossers-De Vries R, Harders-Westerveen J, Buys H, Ruuls-Van Stalle LMF, Stockhofe-Zurwieden N, Zaccaria E, Tommassen J, Wells JM, Smith HE, de Greeff A (2019) In vivo transcriptomes of Streptococcus suis reveal genes required for niche-specific adaptation and pathogenesis. Virulence 10:334–351PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bacon J, james BW, Wernisch L, Williams A, Morley KA, Hatch GJ, Mangan JA, Hinds J, Stoker NG, Butcher PD, Marsh PD (2004) The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis. Tuberculosis (Edinb) 84:205–217CrossRefGoogle Scholar
  6. Bannister SA, Kidd SP, Kirby E, Shah S, Thomas A, Vipond R, Elmore MJ, Telfer Brunton A, Marsh P, Green S, Silman NJ Kempsell KE (2018) Development and assessment of a diagnostic DNA oligonucleotide microarray for detection and typing of meningitis-associated bacterial species. High Throughput, 7(4):32PubMedCentralCrossRefPubMedGoogle Scholar
  7. Borlot F, Regan BM, Bassett AS, Stavropoulos DJ, Andrade DM (2017) Prevalence of pathogenic copy number variation in adults with pediatric-onset epilepsy and intellectual disability. JAMA Neurol 74:1301–1311PubMedPubMedCentralCrossRefGoogle Scholar
  8. Briffotaux J, Liu S, GICQUEL B (2019) Genome-wide transcriptional responses of Mycobacterium to antibiotics. Front Microbiol 10:249PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bumgarner R (2013) Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol, Chapter 22, Unit 22 1Google Scholar
  10. Cao J, Gao S, Chen J, Zhu B, Min R, Wang P (2018) The preparation and clinical application of diagnostic DNA microarray for the detection of pathogens in intracranial bacterial and fungal infections. Exp Ther Med 16:1304–1310PubMedPubMedCentralGoogle Scholar
  11. CHEN MX, Ai L, Chen JH, Feng XY, Chen SH, Cai YC, Lu Y, Zhou XN, Chen JX, Hu W (2016) DNA microarray detection of 18 important human blood protozoan species. PLoS Negl Trop Dis 10:e0005160PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cheung VG, Morley M, Aguilar F, Massimi A, Kucherlapati R, Childs G (1999) Making and reading microarrays. Nat Genet 21:15–19PubMedCrossRefGoogle Scholar
  13. Clarke MA, Luhn P, Gage JC, Bodelon C, Dunn ST, Walker J, Zuna R, Hewitt S, Killian JK, Yan L, Miller A, Schiffman M, Wentzensen N (2017) Discovery and validation of candidate host DNA methylation markers for detection of cervical precancer and cancer. Int J Cancer 141:701–710PubMedPubMedCentralCrossRefGoogle Scholar
  14. Damin F, Galbiati S, Soriani N, Burgio V, Ronzoni M, Ferrari M, Chiari M (2018) Analysis of KRAS, NRAS and BRAF mutational profile by combination of in-tube hybridization and universal tag-microarray in tumor tissue and plasma of colorectal cancer patients. PLoS One 13:e0207876PubMedPubMedCentralCrossRefGoogle Scholar
  15. De OCP, Guarnier FA, Figueiredo LB, Zaramela LS, Pacini ESA, Godinho RO, Gomes MD (2019) Identification of potential target genes associated with the reversion of androgen-dependent skeletal muscle atrophy. Arch Biochem Biophys 663:173–182CrossRefGoogle Scholar
  16. Dey P, Fabri-Faja N, Calvo-Lozano O, Terborg RA, Belushkin A, Yesilkoy F, Fabrega A, Ruiz-Rodriguez JC, Ferrer R, Gonzalez-Lopez JJ, Estevez MC, Altug H, Pruneri V, Lechuga LM (2019) Label-free bacteria quantification in blood plasma by a bioprinted microarray based interferometric point-of-care device. ACS Sens 4:52–60PubMedCrossRefGoogle Scholar
  17. Fan Y, Qiu W, Wang L, Gu X, Yu Y (2016) Exonic deletions of AUTS2 in Chinese patients with developmental delay and intellectual disability. Am J Med Genet A 170A:515–522PubMedCrossRefGoogle Scholar
  18. Fennell L, Dumenil T, Wockner L, Hartel G, Nones K, Bond C, Borowsky J, Liu C, Mckeone D, Bowdler L, Montgomery G, Klein K, Hoffmann I, Patch AM, Kazakoff S, Pearson J, Waddell N, Wirapati P, Lochhead P, Imamura Y, Ogino S, Shao R, Tejpar S, Leggett B Whitehall V (2019) Integrative genome-scale DNA Methylation analysis of a large and unselected cohort reveals five distinct subtypes of Colorectal Adenocarcinomas. Cell Mol Gastroenterol Hepatol 8(2):269–290Google Scholar
  19. Ferreiro-Iglesias A, Montes A, Perez-Pampin E, Canete JD, Raya E, Magro-Checa C, Vasilopoulos Y, Caliz R, Ferrer MA, Joven B, Carreira P, Balsa A, Pascual-Salcedo D, Blanco FJ, Moreno-Ramos MJ, Manrique-Arija S, Ordonez MDC, Alegre-Sancho JJ, Narvaez J, Navarro-Sarabia F, Moreira V, Valor L, Garcia-Portales R, Marquez A, Gomez-Reino JJ, Martin J, Gonzalez A (2019) Evaluation of 12 GWAS-drawn SNPs as biomarkers of rheumatoid arthritis response to TNF inhibitors. A potential SNP association with response to etanercept. PLoS One 14:e0213073PubMedPubMedCentralCrossRefGoogle Scholar
  20. Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Franberg M, Sennblad B, Baldassarre D, Veglia F, Humphries SE, Rauramaa R, de Faire U, Smit AJ, Giral P, Kurl S, Mannarino E, Enroth S, Johansson A, Enroth SB, Gustafsson S, Lind L, Lindgren C, Morris AP, Giedraitis V, Silveira A, Franco-Cereceda A, Tremoli E, Gyllensten U, Ingelsson E, Brunak S, Eriksson P, Ziemek D, Hamsten A, Malarstig A (2017) Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease. PLoS Genet 13:e1006706PubMedPubMedCentralCrossRefGoogle Scholar
  21. Han Z, Xue W, Tao L, Zhu F (2019) Identification of key long non-coding RNAs in the pathology of Alzheimer’s disease and their functions based on genome-wide associations study, microarray, and RNA-seq data. J Alzheimers Dis 68:339–355PubMedCrossRefGoogle Scholar
  22. Hansen S, Hotop S-K, Faye o, Ndiaye o, Böhlken-Fascher S, Pessôa R, Hufert F, Stahl-Hennig C, Frank R, Czerny C-P, Schmidt-Chanasit J, Sanabani SS, Sall AA, Niedrig M, Brönstrup M, Fritz H-J, ABD EL Wahed A (2019) Diagnosing Zika virus infection against a background of other flaviviruses: studies in high resolution serological analysis. Sci Rep 9:3648PubMedPubMedCentralCrossRefGoogle Scholar
  23. Huang L, Chen Y, Lin Y, Tam POS, Cheng Y, Shi Y, Gong B, Lu F, Yang J, Wang H, Yin Y, Cao Y, Jiang D, Zhong L, Xue B, Wang J, Hao F, Lee DY, Pang CP, Sun X, Yang Z (2019) Genome-wide analysis identified 17 new loci influencing intraocular pressure in Chinese population. Sci China Life Sci 62:153–164PubMedCrossRefGoogle Scholar
  24. Inaoka K, Inokawa Y, Nomoto S (2015) Genomic-wide analysis with microarrays in human oncology. Microarrays (Basel) 4:454–473CrossRefGoogle Scholar
  25. Jeon H, Jung JH, Kim Y, Kwon Y, Kim ST (2018) Allergen microarrays for in vitro diagnostics of allergies: comparison with ImmunoCAP and AdvanSure. Ann Lab Med 38:338–347PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jourdy Y, Chatron N, Carage ML, Fretigny M, Meunier S, Zawadzki C, Gay V, Negrier C, Sanlaville D, Vinciguerra C (2016) Study of six patients with complete F9 deletion characterized by cytogenetic microarray: role of the SOX3 gene in intellectual disability. J Thromb Haemost 14:1988–1993PubMedCrossRefGoogle Scholar
  27. Kim ES, Kwon JH, Shin JH, You S, Hong SM, Choi KY (2017) Identification of caveolin-1 as an invasion-associated gene in liver cancer cells using dendron-coated DNA microarrays. Appl Biochem Biotechnol 182:1276–1289PubMedCrossRefGoogle Scholar
  28. Kim DH, Kang HS, Hur SS, Sim S, Ahn SH, Park YK, Park ES, Lee AR, Park S, Kwon SY, Lee JH, Kim KH (2018a) Direct detection of drug-resistant hepatitis B virus in serum using a Dendron-modified microarray. Gut Liver 12:331–341PubMedCrossRefGoogle Scholar
  29. Kim SJ, Lee SC, Kang HG, Gim J, Lee KH, Lee SH, Chun KH (2018b) Heat shock factor 1 predicts poor prognosis of gastric cancer. Yonsei Med J 59:1041–1048PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kusuhara Y, Daizumoto K, Kawai K, Hirayama K, Kowada M, Shintani T, Fukuhara Y, Dondoo TO, Ozaki K, Tsuda M, Fukawa T, Nakatsuji H, Bando Y, Uehara H, Fukumori T, Takahashi M, Kanayama HO (2019) Low expression of toll-like receptor 4 is associated with poor prognosis in bladder cancer. Anticancer Res 39:703–711PubMedCrossRefGoogle Scholar
  31. Lee JS, Hwang H, Kim SY, Kim KJ, Choi JS, Woo MJ, Choi YM, Jun JK, Lim BC, Chae JH (2018) Chromosomal microarray with clinical diagnostic utility in children with developmental delay or intellectual disability. Ann Lab Med 38:473–480PubMedPubMedCentralCrossRefGoogle Scholar
  32. Liebe S, Christ DS, Ehricht R, Varrelmann M (2016) Development of a DNA microarray-based assay for the detection of sugar beet root rot pathogens. Phytopathology 106:76–86PubMedCrossRefGoogle Scholar
  33. LIN Y, Yu K, Li L, Zheng Z, Lin W, Fu Q (2017) Mutational analysis of ASS1, ASL and SLC25A13 genes in six Chinese patients with citrullinemia. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 34:676–679PubMedGoogle Scholar
  34. Liu LY, Ye HY, Chen TH, Chen TC (2017) Development of a microarray for simultaneous detection and differentiation of different tospoviruses that are serologically related to tomato spotted wilt virus. Virol J 14:1PubMedPubMedCentralCrossRefGoogle Scholar
  35. Maneerat Y, Prasongsukarn K, Benjathummarak S, Dechkhajorn W (2017) PPBP and DEFA1/DEFA3 genes in hyperlipidaemia as feasible synergistic inflammatory biomarkers for coronary heart disease. Lipids Health Dis 16:80PubMedPubMedCentralCrossRefGoogle Scholar
  36. Martinez MA, Soto-del Rio MDE L, Gutierrez RM, Chiu CY, Greninger AL, Contreras JF, Lopez S, Arias CF, Isa P (2015) DNA microarray for detection of gastrointestinal viruses. J Clin Microbiol 53:136–145PubMedCrossRefGoogle Scholar
  37. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22:611–633PubMedPubMedCentralCrossRefGoogle Scholar
  38. Moreas H, Tsiambas E, Lazaris AC, Nonni A, Karameris A, Metaxas GE, Armatas HE, Patsouris E (2014) Impact of HPV detection in colorectal adenocarcinoma: HPV protein and chromogenic in situ hybridization analysis based on tissue microarrays. J BUON 19:91–96PubMedGoogle Scholar
  39. Nallamilli, B. R. Hegde, M. 2017. Detecting APC gene mutations in familial adenomatous polyposis (FAP). Curr Protoc Hum Genet, 92, 1081–10816Google Scholar
  40. Nikitin M, Deych K, Grevtseva I, Girsova N, Kuznetsova M, Pridannikov M, Dzhavakhiya V, Statsyuk N Golikov A (2018). Preserved microarrays for simultaneous detection and identification of six fungal potato pathogens with the use of real-time PCR in matrix format. Biosensors (Basel):8(4):129PubMedCentralCrossRefPubMedGoogle Scholar
  41. Nizamuddin S, Govindaraj P, Saxena S, Kashyap M, Mishra A, Singh S, Rotti H, Raval R, Nayak J, Bhat BK, Prasanna BV, Dhumal VR, Bhale S, Joshi KS, Dedge AP, Bharadwaj R, Gangadharan GG, Nair S, Gopinath PM, Patwardhan B, Kondaiah P, Satyamoorthy K, Valiathan MS, Thangaraj K (2015) A novel gene THSD7A is associated with obesity. Int J Obes 39:1662–1665CrossRefGoogle Scholar
  42. Palumbo O, Palumbo P, Delvecchio M, Palladino T, Stallone R, Crisetti M, Zelante L, Carella M (2015) Microdeletion of 12q24.31: report of a girl with intellectual disability, stereotypies, seizures and facial dysmorphisms. Am J Med Genet A 167A:438–444PubMedCrossRefGoogle Scholar
  43. Peng YX, Qiu YW, Chang QX, Yu YH, Zhong M, Li KR (2018) Clinical value of genome-wide chromosome microarray technique in diagnosis of fetal cerebral ventriculomegaly. Nan Fang Yi Ke Da Xue Xue Bao 38:353–357PubMedGoogle Scholar
  44. Peterson JF, Aggarwal N, Smith CA, Gollin SM, Surti U, Rajkovic A, Swerdlow SH, Yatsenko SA (2015) Integration of microarray analysis into the clinical diagnosis of hematological malignancies: how much can we improve cytogenetic testing? Oncotarget 6:18845–18862PubMedPubMedCentralCrossRefGoogle Scholar
  45. Peycheva V, Kamenarova K, Ivanova N, Stamatov D, Avdjieva-Tzavella D, Alexandrova I, Zhelyazkova S, Pacheva I, Dimova P, Ivanov I, Litvinenko I, Bozhinova V, Tournev I, Simeonov E, Mitev V, Jordanova A, Kaneva R (2018) Chromosomal microarray analysis of Bulgarian patients with epilepsy and intellectual disability. Gene 667:45–55PubMedCrossRefGoogle Scholar
  46. Postovit LM, Dieters-Castator DZ, Rambau PF, Kelemen LE, Siegers GM, Lajoie GA, Kobel M (2019) Proteomics derived biomarker panel improves diagnostic precision to classify endometrioid and high-grade serous ovarian carcinoma. Clin Cancer Res 25:4309PubMedCrossRefGoogle Scholar
  47. Prasad A, Hasan SMA, Grouchy S, Gartia MR (2018) DNA microarray analysis using a smartphone to detect the BRCA-1 gene. Analyst 144:197–205PubMedCrossRefGoogle Scholar
  48. Reitzel AM, Macrander J, Mane-Padros D, Fang B, Sladek FM, Tarrant AM (2018) Conservation of DNA and ligand binding properties of retinoid X receptor from the placozoan Trichoplax adhaerens to human. J Steroid Biochem Mol Biol 184:3–10PubMedPubMedCentralCrossRefGoogle Scholar
  49. Roca-Ayats N, Martinez-Gil N, Cozar M, Gerousi M, Garcia-Giralt N, Ovejero D, Mellibovsky L, Nogues X, Diez-Perez A, Grinberg D, Balcells S (2019) Functional characterization of the C7ORF76 genomic region, a prominent GWAS signal for osteoporosis in 7q21.3. Bone 123:39–47PubMedCrossRefGoogle Scholar
  50. Sansovic I, Ivankov AM, Bobinec A, Kero M, Barisic I (2017) Chromosomal microarray in clinical diagnosis: a study of 337 patients with congenital anomalies and developmental delays or intellectual disability. Croat Med J 58:231–238PubMedPubMedCentralCrossRefGoogle Scholar
  51. Schubert, C., Allhoff, M., Tillmann, S., Maie, T., Costa, I. G., Lipka, D. B., Schemionek, M., Feldberg, K., Baumeister, J., Brummendorf, T. H., Chatain, N. Koschmieder, S. 2019. Differential roles of STAT1 and STAT2 in the sensitivity of JAK2V617F- vs. BCR-ABL-positive cells to interferon alpha. J Hematol Oncol, 12, 36Google Scholar
  52. Scionti F, di Martino MT, Pensabene L, Bruni V, Concolino D (2018) The Cytoscan HD Array in the diagnosis of neurodevelopmental disorders. High Throughput 7:28PubMedCentralCrossRefPubMedGoogle Scholar
  53. Sim KY, Park SH, Choi KY, Park JE, Lee JS, Kim BC, Gwak J, Song WK, LEE KH, Park SG (2019) High-throughput epitope profiling of antibodies in the plasma of Alzheimer’s disease patients using random peptide microarrays. Sci Rep 9:4587PubMedPubMedCentralCrossRefGoogle Scholar
  54. Singh V, Rodenbaugh C, Krishnan S (2016) Magnetic optical microarray imager for diagnosing type of diabetes in clinical blood serum samples. ACS Sens 1:437–443PubMedPubMedCentralCrossRefGoogle Scholar
  55. Song Y, Dou F, Zhou Z, Yang N, Zhong J, Pan J, Liu Q, Zhang J, Wang S (2018) Microarray-based detection and clinical evaluation for helicobacter pylori resistance to clarithromycin or levofloxacin and the genotype of CYP2C19 in 1083 patients. Biomed Res Int 2018:2684836PubMedPubMedCentralGoogle Scholar
  56. Sturaro LL, Gonoi T, Busso-Lopes AF, Tararam CA, Levy CE, Lyra L, Trabasso P, Schreiber AZ, Kamei K Moretti ML (2018) Visible DNA microarray system as an adjunctive molecular test in identification of pathogenic Fungi directly from a blood culture bottle. J Clin Microbiol 56(5): e01908-17Google Scholar
  57. Su H, Lin Z, Peng W, Hu Z (2019) Identification of potential biomarkers of lung adenocarcinoma brain metastases via microarray analysis of cDNA expression profiles. Oncol Lett 17:2228–2236PubMedGoogle Scholar
  58. Sultankulova KT, Kozhabergenov NS, Strochkov VM, Burashev YD, Shorayeva KA, Chervyakova OV, Rametov NM, Sandybayev NT, Sansyzbay AR, Orynbayev MB (2017) New oligonucleotide microarray for rapid diagnosis of avian viral diseases. Virol J 14:69PubMedPubMedCentralCrossRefGoogle Scholar
  59. Tarca AL, Romero R, Draghici S (2006) Analysis of microarray experiments of gene expression profiling. Am J Obstet Gynecol 195:373–388PubMedPubMedCentralCrossRefGoogle Scholar
  60. Valsesia, A., Wang, Q. P., Gheldof, N., Carayol, J., Ruffieux, H., Clark, T., Shenton, V., Oyston, L. J., Lefebvre, G., Metairon, S., Chabert, C., Walter, O., Mironova, P., Lau, P., Descombes, P., Viguerie, N., Langin, D., Harper, M. E., Astrup, A., Saris, W. H., DENT, R., Neely, G. G. Hager, J. 2019. Genome-wide gene-based analyses of weight loss interventions identify a potential role for NKX6.3 in metabolism. Nat Commun, 10, 540Google Scholar
  61. van Cauwenbergh C, Coppieters F, Roels D, de Jaegere S, Flipts H, de Zaeytijd J, Walraedt S, Claes C, Fransen E, van Camp G, Depasse F, Casteels I, de Ravel T, Leroy BP, de Baere E (2017) Mutations in splicing factor genes are a major cause of autosomal dominant retinitis Pigmentosa in Belgian families. PLoS One 12:e0170038PubMedPubMedCentralCrossRefGoogle Scholar
  62. Wain LV, Shrine N, Artigas MS, Erzurumluoglu AM, Noyvert B, Bossini-Castillo L, Obeidat M, Henry AP, Portelli MA, Hall RJ, Billington CK, Rimington TL, Fenech AG, John C, Blake T, Jackson VE, Allen RJ, Prins BP, Campbell A, Porteous DJ, Jarvelin MR, Wielscher M, James AL, Hui J, Wareham NJ, Zhao JH, Wilson JF, Joshi PK, Stubbe B, Rawal R, Schulz H, Imboden M, Probst-Hensch NM, Karrasch S, Gieger C, Deary IJ, Harris SE, Marten J, Rudan I, Enroth S, Gyllensten U, Kerr SM, Polasek O, Kahonen M, Surakka I, Vitart V, Hayward C, Lehtimaki T, Raitakari OT, Evans DM, Henderson AJ, Pennell CE, Wang CA, Sly PD, Wan ES, Busch R, Hobbs BD, Litonjua AA, Sparrow DW, Gulsvik A, Bakke PS, Crapo JD, Beaty TH, Hansel NN, Mathias RA, Ruczinski I, Barnes KC, Bosse Y, Joubert P, van den Berge M, Brandsma CA, Pare PD, Sin DD, Nickle DC, Hao K, Gottesman O, Dewey FE, Bruse SE, Carey DJ, Kirchner HL, Jonsson S, Thorleifsson G, Jonsdottir I, Gislason T, Stefansson K, Schurmann C, Nadkarni G, Bottinger EP, Loos RJ, WALTERS RG, CHEN Z, Millwood IY, Vaucher J, Kurmi OP, Li L, Hansell AL, Brightling C, Zeggini E, Cho MH, Silverman EK et al (2017) Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet 49:416–425PubMedPubMedCentralCrossRefGoogle Scholar
  63. Wang J, Duan Y, Meng QH, Gong R, Guo C, Zhao Y, Zhang Y (2018a) Integrated analysis of DNA methylation profiling and gene expression profiling identifies novel markers in lung cancer in Xuanwei, China. PLoS One 13:e0203155PubMedPubMedCentralCrossRefGoogle Scholar
  64. Wang, Y., Cao, L., Liang, D., Meng, L., Wu, Y., Qiao, F., Ji, X., Luo, C., Zhang, J., Xu, T., YU, B., Wang, L., Wang, T., Pan, Q., Ma, D., Hu, P. Xu, Z. 2018b. Prenatal chromosomal microarray analysis in fetuses with congenital heart disease: a prospective cohort study. Am J Obstet Gynecol, 218, 244 e1–244 e17PubMedCrossRefGoogle Scholar
  65. Wang R, Lei T, Fu F, Li R, Jing X, Yang X, Liu J, Li D, Liao C (2019) Application of chromosome microarray analysis in patients with unexplained developmental delay/intellectual disability in South China. Pediatr Neonatol 60:35–42PubMedCrossRefGoogle Scholar
  66. Williams ES, Barrett MJ, Dhamija R, Toran L, Chambers C, Mahadevan MS, Golden WL (2018) Phase determination using chromosomal microarray and fluorescence in situ hybridization in a patient with early onset Parkinson disease and two deletions in PRKN. Mol Genet Genomic Med 6:457–462PubMedPubMedCentralCrossRefGoogle Scholar
  67. Wu XL, Li R, Fu F, Pan M, Han J, Yang X, Zhang YL, Li FT, Liao C (2017) Chromosome microarray analysis in the investigation of children with congenital heart disease. BMC Pediatr 17:117PubMedPubMedCentralCrossRefGoogle Scholar
  68. Xia Y, Yang Y, Huang S, Wu Y, Li P, Zhuang J (2018) Clinical application of chromosomal microarray analysis for the prenatal diagnosis of chromosomal abnormalities and copy number variations in fetuses with congenital heart disease. Prenat Diagn 38:406–413PubMedCrossRefGoogle Scholar
  69. Xia Y, Huang S, Wu Y, Yang Y, Chen S, Li P, Zhuang J (2019) Clinical application of chromosomal microarray analysis for the diagnosis of Williams-Beuren syndrome in Chinese Han patients. Mol Genet Genomic Med 7:e00517PubMedCrossRefGoogle Scholar
  70. Yang K, Gao J, Luo M (2019) Identification of key pathways and hub genes in basal-like breast cancer using bioinformatics analysis. Oncol Targets Ther 12:1319–1331CrossRefGoogle Scholar
  71. Yao, Q., WANG, X., He, W., Song, Z., Wang, B., Zhang, J. Qin, Q. 2019. Circulating microRNA-144-3p and miR-762 are novel biomarkers of Graves’ disease. Endocrine 65, 102PubMedCrossRefGoogle Scholar
  72. Yeste A, Quintana FJ (2013) Antigen microarrays for the study of autoimmune diseases. Clin Chem 59:1036–1044PubMedCrossRefGoogle Scholar
  73. Young BC, Earle SG, Soeng S, Sar P, Kumar V, Hor S, Sar V, Bousfield R, Sanderson ND, Barker L, Stoesser N, Emary KR, Parry CM, Nickerson EK, Turner P, Bowden R, Crook DW, Wyllie DH, Day NP, Wilson DJ Moore CE (2019) Panton-valentine leucocidin is the key determinant of Staphylococcus aureus pyomyositis in a bacterial GWAS. elife:8: e42486Google Scholar
  74. Zarrei M, Fehlings DL, Mawjee K, Switzer L, Thiruvahindrapuram B, Walker S, Merico D, Casallo G, Uddin M, Macdonald JR, Gazzellone MJ, Higginbotham EJ, Campbell C, Deveber G, Frid P, Gorter JW, Hunt C, Kawamura A, Kim M, Mccormick A, Mesterman R, Samdup D, Marshall CR, Stavropoulos DJ, Wintle RF, Scherer SW (2018) De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med 20:172–180PubMedCrossRefGoogle Scholar
  75. Zeng CP, Lin X, Peng C, Zhou L, You HM, Shen J, Deng HW (2019) Identification of novel genetic variants for type 2 diabetes, childhood obesity, and their pleiotropic loci. J Hum Genet 64:369–377PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Amity Institute of BiotechnologyAmity UniversityNoidaIndia
  2. 2.Amity Institute of Molecular Medicine & Stem Cell ResearchAmity UniversityNoidaIndia

Personalised recommendations