Advertisement

Modified Elliptic Low-Pass Filters

  • Vančo LitovskiEmail author
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 596)

Abstract

The ultimate selective amplitude characteristic is the one which approximates the gain in both the passband and in the stopband in equi-ripple manner.

References

  1. 1.
    Zolotarev EI (1877) Application of elliptic functions to problems about functions with least and greatest deviation from zero. Zap Imp Akad Nauk St Petersburg 30(5) (in Russian). www.math.technion.ac.il/hat/fpapers/zol1.pdf. Last visited May 2019
  2. 2.
    Cauer W (1958) Synthesis of linear communication networks. McGraw-Hill, New YorkzbMATHGoogle Scholar
  3. 3.
    Orfanidis JS (2006) Lecture notes on elliptic filter design. Department of Electrical & Computer Engineering Rutgers University, Piscataway, NJ. http://www.ece.rutgers.edu/~orfanidi/ece521/notes.pdf. Last visited May 2019
  4. 4.
    Zverev AI (2005) Handbook of filter synthesis. Wiley-Blackwell, New YorkGoogle Scholar
  5. 5.
    Chen X, Parks TW (1986) Analytic design of optimal FIR narrow-band filters using Zolotarev polynomials. IEEE Trans Circuits Syst CAS 33(11):1065–1071Google Scholar
  6. 6.
    Lawden DF (1989) Elliptic functions and applications. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Levy R (1970) Generalized rational function approximation in finite intervals using Zolotarev functions. IEEE Trans Microw Theory Tech MTT 18(12):1052–1064ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    McClellan JH, Parks TW, Rabiner LR (1974) A computer program for designing optimum FIR linear phase digital filters. IEEE Trans Audio Electro-Acoust 21(6):506–526CrossRefGoogle Scholar
  9. 9.
    Selesnick IW, Burrus CS (1996) Exchange algorithms for the design of linear phase fir filters and differentiators having flat monotonic pass bands and equi-ripple stop-bands. IEEE Trans Circuits Syst II 43(9):671–675CrossRefGoogle Scholar
  10. 10.
    Todd J (1984) Applications of transformation theory: a legacy from Zolotarev (1847–1878). In: Singh SP, Burry JWH, Watson B (eds) Approximation theory and spline functions. D. Reidel Publishing Company, New York, pp 207–245CrossRefGoogle Scholar
  11. 11.
    Vlček M, Unbehauen R (1999) Zolotarev polynomials and optimal FIR filters. IEEE Trans Signal Process 47(3):717–729ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Corral AC, Lindquist CS (2001) Optimizing elliptic filter selectivity. Analog Integr Circ Sig Process 28(1):53–61CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Elektronski FakultetNišSerbia

Personalised recommendations