Advertisement

Parallel Active SC Circuit Synthesis

  • Vančo LitovskiEmail author
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 596)

Abstract

Filtering at low frequencies means use of inductors and capacitors of large values. When inductors are excluded, such as in active RC circuits and small acceptable values are assigned to the capacitances, the resistances must have large values. To avoid these, simulated resistors are used in a form of a combination of capacitors and switches. Using high frequency switching along with a tolerable value of a capacitance any practical value of the resistance can be achieved, thus practically eliminating the problem.

References

  1. 1.
    Carusone TC, Johns DA, Martin KW (2012) Analog integrated circuit design. Wiley, New YorkGoogle Scholar
  2. 2.
    Allen PE, Holberg DR (2002) CMOS analog circuit design. Oxford University Press, New YorkGoogle Scholar
  3. 3.
    Schaumann R, Van Valkenboug E (2001) Design of analog filters. Oxford University Press, New YorkGoogle Scholar
  4. 4.
    Gray PR, Hurst PJ, Lewis SH, Meyer RG (2009) Analysis and design of analog integrated circuits. Wiley Inc, New YorkGoogle Scholar
  5. 5.
    Steensgaard-Madsen J (1999) Bootstrapped low-voltage analog switches. In: Proceedings of IEEE international symposium on circuits and systems, vol 2, Orlando, FL, USA, ISCAS ’99, pp 29–32Google Scholar
  6. 6.
    Kazim MI (2006) Design of highly linear sampling switches for CMOS track-and-hold circuits. Division of Electronics Systems, Department of Electrical Engineering, Linköpings University, Linköping, SwedenGoogle Scholar
  7. 7.
    Fayomi CJB, Roberts GW, Sawan M (2005) Low-voltage CMOS analog bootstrapped switch for sample-and-hold circuit: design and chip characterization. In: Proceedings of the IEEE international symposium on circuits and systems, Kobe, Japan, ISCAS’05, pp 2200–2203Google Scholar
  8. 8.
    Oppenheim A, Schafer RW (2009) Discrete time signal processing. Prentice-Hall Signal Processing Series, PearsonGoogle Scholar
  9. 9.
    Damper RI (1995) Introduction to discrete-time signals and systems. Springer, NetherlandsGoogle Scholar
  10. 10.
    Fleischer PE, Laker KR (1979) A family of active switched capacitor biquad building blocks. Bell Syst Tech J 58(10):2235–2269CrossRefGoogle Scholar
  11. 11.
    Mirković D, Petković P, Litovski VB (2014) A second order s-to-z transform and its implementation to IIR filter design. COMPEL: Int J Comput Math Electr Electron Eng 33(5):1831–1843CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Sandberg IW, Shichman H (1968) Numerical integration of system of stiff nonlinear differential equations. Bell Syst Tech J 47(4):511–527MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gear CW (1971) Numerical initial value problems in ordinary differential equations. Prentice-Hall, Englewood Cliffs, NJzbMATHGoogle Scholar
  15. 15.
    Nagel LW (1975) SPICE2: a computer program to simulate semiconductor circuits. University of California at Berkeley, ERL Memo.-M520, 9 May 1975, Berkeley, CAGoogle Scholar
  16. 16.
    Litovski V, Zwolinski M (1997) VLSI circuit simulation and optimization. Chapman and Hall, LondonGoogle Scholar
  17. 17.
    Sallen RP, Key EL (1995) A practical method of designing RC active filters. IRE Trans Circuit Theory, CT 2:74–85CrossRefGoogle Scholar
  18. 18.
    Kaiser JF (1996) Digital filters. In: Kuo FF, Kaiser JF (eds) System analysis by digital computer. Wiley, New York Chap. 7Google Scholar
  19. 19.
    Hongyan C, Lisheng W (2012) Software and hardware implementation of IIR based on matlab & acceldsp. In: Proceedings of the 2nd international conference on computer application and system modeling, Atlantis Press, Paris, FranceGoogle Scholar
  20. 20.
    Nelatury SR (2007) Additional correction to the impulse invariance method for the design of IIR digital filters. Digit Signal Proc 17(2):530–540CrossRefGoogle Scholar
  21. 21.
    Németh JG, Kollár I (2000) Step-invariant transform from z- to s-domain, a general framework. In: Proceedings of the 17th IEEE instrumentation and measurement technology conference, IMTC/2000, Baltimore, MD, pp 902–907Google Scholar
  22. 22.
    Paarmann LD (1998) Mapping from the s-domain to the z-domain via magnitude-invariance method. Sig Process 69(3):219–228CrossRefGoogle Scholar
  23. 23.
    Paarmann LD (2006) Mapping from the s-domain to the z-domain via phase-invariance method. Sig Process 86(2):223–229CrossRefGoogle Scholar
  24. 24.
    Shi R, Wang S, Zhao J (2012) An unsplit complex-frequency-shifted PML based on matched z-transform for FDTD modelling of seismic wave equations. J Geophys Eng 9(2):218–229CrossRefGoogle Scholar
  25. 25.
    Park W, Park KS, Koh HM (2008) Active control of large structures using a bilinear pole-shifting transform with H control method. Eng Struct 30(11):3336–3344MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Elektronski FakultetNišSerbia

Personalised recommendations