Advertisement

Modelling of Ductile Mode Cutting

  • Kiu LiuEmail author
  • Hao Wang
  • Xinquan Zhang
Chapter
Part of the Springer Series in Advanced Manufacturing book series (SSAM)

Abstract

Although the demand for industrial applications for brittle material growing rapidly, the manufacturing of brittle material for making precise components is very challenging due to its poor machinability and brittleness. In this chapter, theoretical analyses are given based on brittle material’s mechanical properties as the functions of temperature and on critical conditions for ductile mode chip formation in cutting of brittle material. An energy model for ductile mode chip formation in cutting of brittle material is developed, in which critical undeformed chip thickness for ductile chip formation in cutting of brittle material is predicted from material’s mechanical properties, or tool geometry and cutting conditions used. Experiments are conducted on conventional grooving of tungsten carbide material to verify the proposed model for predicting critical undeformed chip thickness, which shows a substantial agreement between the predicted value and experimental results.

References

  1. 1.
    Liu K (2002) Ductile cutting for rapid prototyping of tungsten carbide tools. NUS Ph.D. thesis. SingaporeGoogle Scholar
  2. 2.
    Boothroyd G, Knight WA (1989) Fundamentals of machining and machine tools. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Liu K, Li XP (2001) Ductile cutting of tungsten carbide. J Mater Proc Tech 113:348–354CrossRefGoogle Scholar
  4. 4.
    Liu K, Li XP (2001) Modelling of ductile cutting of tungsten carbide. T NAMRI/SME 29:251–258Google Scholar
  5. 5.
    Kuhn H, Medlin D (1988) ASM handbook V 8. ASM International Materials Park, NoveltyGoogle Scholar
  6. 6.
    Lee M (1983) High temperature hardness of tungsten carbide. Metall Trans A Phys Meta Mater Sci 14:1625–1629CrossRefGoogle Scholar
  7. 7.
    Schaller R, Ammann JJ, Bonjour C (1988) Internal friction in WC-Co hard metals. Mater Sci Eng A105(106):313–321CrossRefGoogle Scholar
  8. 8.
    Raghunathan S, Caron R, Freiderichs J et al (1996) Tungsten carbide technologies. Adv Mater Proc 149:21–23Google Scholar
  9. 9.
    Milman YV, Chugunova S, Goncharuck V et al (1997) Low and high temperature hardness of WC-6 wt%Co alloys. Int J Refract Metal Hard Mater 15:97–101CrossRefGoogle Scholar
  10. 10.
    Milman YV, Luyckx S, Northrop IT (1999) Influence of temperature, grain size and cobalt content on the hardness of WC-Co alloys. Int J Refract Metal Hard Mater 17:39–44CrossRefGoogle Scholar
  11. 11.
    Acchar W, Gomes UU, Kaysser WA (1999) Strength degradation of a tungsten carbide-cobalt composite at elevated temperatures. Mater Charac 43:27–32CrossRefGoogle Scholar
  12. 12.
    Uygur ME (1997) Modelling tungsten carbide/cobalt composites. Adv Mater Proc 151:35–36Google Scholar
  13. 13.
    Bolton JD, Keely RJ (1983) Fracture toughness (Kic) of cemented carbides. Fib Sci Tech 19:37–56CrossRefGoogle Scholar
  14. 14.
    Shetty DK, Wright IG, Mincer PN et al (1985) Indentation fracture of WC-Co cermets. J Mater Sci 20:1873–1882CrossRefGoogle Scholar
  15. 15.
    Han D, Mecholsky JJ (1990) Fracture analysis of cobalt-bonded tungsten carbide composites. J Mater Sci 25:4949–4956CrossRefGoogle Scholar
  16. 16.
    James MN, Human AM, Luyckx S (1990) Fracture toughness testing of hard metals using compression-compression precracking. J Mater Sci 25:4810–4814CrossRefGoogle Scholar
  17. 17.
    Schubert WD, Neumeister H, Kinger G et al (1998) Hardness to toughness relationship of fine-grained WC-Co hardmetals. Int J Refract Metal Hard Mater 16:133–142CrossRefGoogle Scholar
  18. 18.
    Laugier MT (1987) Palmqvist toughness in WC-Co composites viewed as a ductile/brittle transition. J Mater Sci L 6:768–770CrossRefGoogle Scholar
  19. 19.
    Laugier MT (1987) Comparison of toughness in WC-Co determination by a compact tensile technique with model predictions. J Mater Sci Lett 6:779–780CrossRefGoogle Scholar
  20. 20.
    Laugier MT (1987) Hertzian indentation of ultra-fine grain size WC-Co composites. J Mater Sci Lett 6:841–843CrossRefGoogle Scholar
  21. 21.
    Laugier MT (1987) Palmqvist indentation toughness in WC-Co composites. J Mater Sci Lett 6:897–900CrossRefGoogle Scholar
  22. 22.
    Laugier MT (1988) Elevated temperature properties of WC-Co cemented carbides. Mater Sci Eng A 105(106):363–367CrossRefGoogle Scholar
  23. 23.
    Laugier MT (1989) Validation of the Palmqvist indentation approach to toughness determination in WC-Co composites. Cera I 15:121–125Google Scholar
  24. 24.
    Laugier MT (1989) Toughness determination in ceramics using sharp and blunt indentation techniques. Cera I 15:323–325Google Scholar
  25. 25.
    Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. ASME T J Eng Ind 113:184–189CrossRefGoogle Scholar
  26. 26.
    Venkatesh VC, Inasaki I, Toenshof HK et al (1995) Observations on polishing and ultraprecision machining of semiconductor substrate materials. CIRP Ann 44:611–618CrossRefGoogle Scholar
  27. 27.
    Beltrao PA, Gee AE, Corbett J, Whatmore RW (1999) Ductile mode machining of commercial PZT ceramics. CIRP Ann 48:437–440CrossRefGoogle Scholar
  28. 28.
    Blackley WS, Scattergood RO (1994) Chip topography for ductile-regime machining of germanium. ASME T J Eng I 116:263–266CrossRefGoogle Scholar
  29. 29.
    Ngoi BKA, Sreejith PS (2000) Ductile regime finish machining—a review. Int J Adv Manu Tech 16:547–550CrossRefGoogle Scholar
  30. 30.
    Venkatesh VC, Awaluddin MS, Ariffin AR (1999) The tool life, mechanics, and economics in conventional and ultra-precision machining. ASME I Mech Eng Con Ex 10:847–854Google Scholar
  31. 31.
    Ruff AW, Shin H, Evans CJ (1995) Damage process in ceramics resulting from diamond tool indentation and scratching in various environments. Wear 181–183:551–562CrossRefGoogle Scholar
  32. 32.
    Liu K, Li XP, Rahman M (2003) Characteristics of high speed micro cutting of tungsten carbide. J Mater Proc Tech 140:352–357CrossRefGoogle Scholar
  33. 33.
    Liu K, Li XP, Rahman M et al (2004) A study of the cutting modes in grooving of tungsten carbide. Int J Adv Manu Tech 24:321–326CrossRefGoogle Scholar
  34. 34.
    Liu K, Li XP, Liang YS (2004) Nanometer-scale ductile cutting of tungsten carbide. J Manu Proc 6:187–195 CrossRefGoogle Scholar
  35. 35.
    Liu K, Li XP, Rahman M et al (2004) Study of ductile mode cutting in grooving of tungsten carbide with and without ultrasonic vibration assistance. Int J Adv Manu Tech 24:389–394CrossRefGoogle Scholar
  36. 36.
    Zum Gahr KH (1987) Microstructure and wear of materials. Elsevier, Amsterdam, pp 115–146Google Scholar
  37. 37.
    Li XP, Rahman M, Liu K et al (2003) Nano-precision measurement of diamond tool edge radius for wafer fabrication. J Mater Proc Tech 140:358–362CrossRefGoogle Scholar
  38. 38.
    Meyers MA (1994) Dynamic behaviour of materials. Wiley, New York, pp 488–566CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Singapore Institute of Manufacturing TechnologySingaporeSingapore
  2. 2.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore
  3. 3.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations