IRC-SET 2018 pp 309-319 | Cite as

Building Nanostructured Porous Silica Materials Directed by Surfactants

  • Wayne W. Z. Yeo
  • Su Hui Lim
  • Connie K. LiuEmail author
  • Gen YongEmail author
Conference paper


Silica nanomaterials have found prevailing use in biomedical applications due to their biocompatibility and non-toxicity. The use of a structure-directing agent in silica sol-gel synthesis enables us to direct the formation of silica nanostructures into forms that are otherwise difficult to obtain, allowing the exertion of a fine degree of control over the morphology, dimensions and architecture of the nanostructures. Single-tailed surfactants have been used extensively as soft templates to produce mesoporous silica materials. This study investigates the use of a double-tailed surfactant, a didodecyldimethylammonium phosphate surfactant (DDAH2PO4) as a structure-directing agent in the sol-gel synthesis of silica at ambient conditions in aqueous solution. The effects of varying reaction parameters such as surfactant concentration and solution temperature on resulting silica morphology are presented. Morphological transitions from nanobeads to hexagonal plates and toroidal concave particles are observed with increasing surfactant concentrations, as well as a gradual loss in templating ability at elevated solution temperatures (up to 25 °C). This allows us to access different morphologies and dimensions of nanostructures within the same synthesis scheme templated with DDAH2PO4.



We acknowledge the Institute of Materials Research and Engineering, A*STAR for providing the resources to conduct this study and Ms. Zhang Nan for collecting the titration data used in Fig. 2. W.W.Z. Yeo is grateful to Victoria Junior College and Mr. Wong Shiongwei for advice, support and guidance.

Supplementary material

471308_1_En_25_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1151 kb)


  1. 1.
    Slowing, I. I., Vivero-Escoto, J. L., Wu, C.-W., & Lin, V. S.-Y. (2008). Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews, 60, 1278–1288.Google Scholar
  2. 2.
    Ow, H., Larson, D. R., Srivastava, M., Baird, B. A., Webb, W. W., & Wiesner, U. (2005). Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters, 5, 113–117.Google Scholar
  3. 3.
    Liberman, A., Mendez, N., Trogler, W. C., & Kummel, A. C. (2014). Synthesis and surface functionalization of silica nanoparticles for nanomedicine. Surface Science Reports, 69, 132–158.Google Scholar
  4. 4.
    Popplewell, J., King, S., Day, J., Ackrill, P., Fifield, L., Cresswell, R., Di Tada, M., & Liu, K. (1998). Kinetics of uptake and elimination of silicic acid by a human subject: A novel application of 32Si and accelerator mass spectrometry. Journal of Inorganic Biochemistry, 69, 177–180.Google Scholar
  5. 5.
    Xu, Z. P., Zeng, Q. H., Lu, G. Q., & Yu, A. B. (2006). Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 61, 1027–1040.Google Scholar
  6. 6.
    Stöber, W., Fink, A., & Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26, 62–69.Google Scholar
  7. 7.
    Yang, J., Lind, J. U., & Trogler, W. C. (2008). Synthesis of hollow silica and titania nanospheres. Chemistry of Materials, 20, 2875–2877.Google Scholar
  8. 8.
    Pohaku Mitchell, K. K., Liberman, A., Kummel, A. C., & Trogler, W. C. (2012). Iron(III)-doped, silica nanoshells: A biodegradeable form of silica Journal of the American Chemical Society, 134, 13997–14003.Google Scholar
  9. 9.
    Liu, Y., Goebl, J., & Yin, Y. (2013). Templated synthesis of nanostructured materials. Chemical Society Reviews, 42, 2610–2653.Google Scholar
  10. 10.
    Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … & Higgins, J. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society114(27), 10834–10843.Google Scholar
  11. 11.
    Ortac, I., Simberg, D., Yeh, Y.-S., Yang, J., Messmer, B., Trogler, W. C., Tsein, R. Y., & Esener, S. (2014). Dual-porosity hollow nanoparticles for the immunoprotection and delivery of nonhuman enzymes. Nano Letters, 14, 3023–3032.Google Scholar
  12. 12.
    Trogler, W. C., Esener, S. C., Messmer, D., Lind, J. U., Mitchell, K. K., & Yang, J. (2013, April). Hollow silica nanospheres and methods of making same. US Patent 20130230570A1.Google Scholar
  13. 13.
    Wan, Y., & Zhao, D. (2007). On the controllable soft-templating approach to mesoporous silicates. Chemical Reviews, 107, 2821–2860.Google Scholar
  14. 14.
    Tomczak, M. M., Glawe, D. D., Drummy, L. F., Lawrence, C. G., Stone, M. O., Perry, C. C., Pochan, D. J., Deming, T. J., & Naik, R. R. (2005). Polypeptide-templated synthesis of hexagonal silica platelets. Journal of the American Chemical Society, 127, 12577–12582.Google Scholar
  15. 15.
    Bellomo, E. G., & Deming, T. J. (2006). Monoliths of aligned silica-polypeptide hexagonal platelets. Journal of the American Chemical Society, 128, 2276–2279.Google Scholar
  16. 16.
    Israelachvili, J. N., Mitchell, D. J., & Ninham, B. W. (1976). Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 72, 1525–1568.Google Scholar
  17. 17.
    Kang, C., & Khan, A. (1993). Self-assembly of systems of didodecyldimethylammonium surfactants: Binary and ternary phase equilibria and phase structures with sulphate, hydroxide, acetate and chloride counterions. Journal of Colloid and Interface Science, 156, 218–228.Google Scholar
  18. 18.
    Thalberg, K., Lindman, B., & Karlstroem, G. (1991). Phase behavior of a system of cationic surfactant and anionic polyelectrolyte: The effect of salt. The Journal of Physical Chemistry, 95, 6004–6011.Google Scholar
  19. 19.
    Cölfen, H., Page, M. G., Dubois, M., & Zemb, T. (2007). Mineralization in complex fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 303, 46–54.Google Scholar
  20. 20.
    Kresge, C., Leonowicz, M., Roth, W. J., Vartuli, J., & Beck, J. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710.Google Scholar
  21. 21.
    Warr, G. G., Sen, R., Evans, D. F., & Trend, J. E. (1988). Microemulsion formation and phase behavior of dialkyldimethylammonium bromide surfactants. The Journal of Physical Chemistry, 92, 774–783.Google Scholar
  22. 22.
    Liu, C. K., & Warr, G. G. (2014). Self-assembly of didodecyldimethylammonium surfactants modulated by multivalent, hydrolyzable counterions. Langmuir, 31, 2936–2945.Google Scholar
  23. 23.
    Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R., Stucky, G., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., & Chmelka, B. F. (1993). Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science, 261, 1299.Google Scholar
  24. 24.
    Yong, G., Xu, W., & Liu, C. (2017, July). Hexagonal silica platelets and methods of synthesis thereof., WO Patent App. PCT/SG2017/050,025.Google Scholar
  25. 25.
    Che, S., Li, H., Lim, S., Sakamoto, Y., Terasaki, O., & Tatsumi, T. (2005). Synthesis mechanism of cationic surfactant templaitng mesoporous silica under an acidic synthesis process. Chemistry of Materials, 17, 4103–4113.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Victoria Junior CollegeSingaporeSingapore
  2. 2.Institute of Materials Research and Engineering, Agency for Science, Technology and ResearchSingaporeSingapore
  3. 3.Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science UniversityPortlandUSA

Personalised recommendations