Advertisement

IRC-SET 2018 pp 221-234 | Cite as

Genes Associated with Disease-Free Survival Prognosis of Renal Cancers

A Computational Screening for Potential Biomarkers and Targets for Gene Therapy
  • Gideon Tay Yee Chuen
  • Timothy Lim Tyen Siang
  • Shannon Lee Xin Ying
  • Lee Wai Yeow
  • Caroline G. LeeEmail author
Conference paper

Abstract

Renal Cell Carcinoma (RCC) incidence has consistently been on the rise in recent years. There are 4 main types of RCC, namely Bladder Urothelial Carcinoma (BLCA), Kidney Chromophobe (KICH), Kidney Renal Clear Cell Carcinoma (KIRC), and Kidney Renal Papillary Cell Carcinoma (KIRP). The aim of this investigation is to identify genes in the tumors across the various renal cancers that can best distinguish patients with good versus those with poor disease-free survival (DFS), and determine pertinent cancer-related pathways that genes associated with DFS reside in. We hypothesized that genes significantly associated with DFS are associated with pathways that can be targeted for gene therapy and be identified as potential biomarkers for RCC. Genes in the tumors of RCC patients significantly associated with DFS were identified from The Cancer Genome Atlas (TCGA) database using Kaplan-Meier analyses. Genes with high expression that are associated with poor survival of patients might serve as potential biomarkers and/or targets for gene therapy across renal associated cancers with the exception of BLCA.

Keywords

Renal Cell Carcinoma (RCC) Bladder Urothelial Carcinoma (BLCA) Kidney Chromophobe (KICH) Kidney Renal Clear Cell Carcinoma (KIRC) Kidney Renal Papillary Cell Carcinoma (KIRP) Gene therapy Biomarkers Disease-free survival Prognosis 

Notes

Acknowledgements

The authors thank their mentors, A/P Caroline Lee Guat Lay and Mr. Lee Wai Yeow for their constant guidance and support.

References

  1. 1.
    Motzer, R. J., Bander, N. H., & Nanus, D. M. (1996). Renal-cell carcinoma. New England Journal of Medicine, 335(12), 865–875.  https://doi.org/10.1056/nejm199609193351207.CrossRefPubMedGoogle Scholar
  2. 2.
    World Cancer Research Fund International. Kidney cancer statistics. Retrieved from http://www.wcrf.org/int/cancer-facts-figures/data-specific-cancers/kidney-cancer-statistics.
  3. 3.
    World Health Organisation. (2017). Obesity and overweight. Retrieved from http://www.who.int/mediacentre/factsheets/fs311/en/.
  4. 4.
    Chow, W., Dong, L. M., & Devesa, S. S. (2010). Epidemiology and risk factors for kidney cancer. Nature Reviews Urology, 7(5), 245–257.  https://doi.org/10.1038/nrurol.2010.46.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Denkert, C., et al. (2003). Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer, 97(12), 2978–2987.  https://doi.org/10.1002/cncr.11437.CrossRefPubMedGoogle Scholar
  6. 6.
    Chin, A. I., et al. (2006). Surveillance strategies for renal cell carcinoma patients following nephrectomy. Reviews in Urology, 8(1), 1–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Weinstein, J. N., et al. (2013). The Cancer Genome Atlas pan-cancer analysis project. Nature Genetics, 45(10), 1113–1120.CrossRefGoogle Scholar
  8. 8.
    Chakraborty, R., Rao, C. R., & Sen, P. K. (2012). Bioinformatics in human health and heredity (Vol. 28). Newnes Books.Google Scholar
  9. 9.
    Barraclough, H., Simms, L., & Govindan, R. (2011). Biostatistics primer: What a clinician ought to know: Hazard ratios. Journal of Thoracic Oncology, 6(6), 978–982.  https://doi.org/10.1097/jto.0b013e31821b10ab.CrossRefPubMedGoogle Scholar
  10. 10.
    Rich, J. T., et al. (2010). A practical guide to understanding Kaplan-Meier curves. Otolaryngology—Head and Neck Surgery, 143(3), 331–336.  https://doi.org/10.1016/j.otohns.2010.05.007.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Spruance, S. L., Reid, J. E., Grace, M., & Samore, M. (2004). Hazard ratio in clinical trials. Antimicrobial Agents and Chemotherapy, 48(8), 2787–2792.  https://doi.org/10.1128/AAC.48.8.2787-2792.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57.  https://doi.org/10.1038/nprot.2008.211.CrossRefGoogle Scholar
  13. 13.
    Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2008). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1–13.  https://doi.org/10.1093/nar/gkn923.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Shannon, P., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504.  https://doi.org/10.1101/gr.1239303.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vailaya, A., et al. (2004). An architecture for biological information extraction and representation. Bioinformatics, 21(4), 430–438.  https://doi.org/10.1093/bioinformatics/bti187.
  16. 16.
    King, J. Y., et al. (2005). Pathway analysis of coronary atherosclerosis. Physiological Genomics, 23(1), 103–118.  https://doi.org/10.1152/physiolgenomics.00101.2005.CrossRefPubMedGoogle Scholar
  17. 17.
    Ashley, E. A., et al. (2006). Network analysis of human in-stent restenosis. Circulation, 114(24), 2644–2654.  https://doi.org/10.1161/circulationaha.106.637025.
  18. 18.
    World-Health-Organisation. (2001). Biomarkers in risk assessment: Validity and validation. Retrieved from http://www.inchem.org/documents/ehc/ehc/ehc222.htm.
  19. 19.
    Easton, D. F., et al. (1995). Breast and ovarian cancer incidence in BRCA1-mutation carriers. American Journal of Human Genetics, 56(1), 265–271.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Lin, K., Lipsitz, R., Miller, T., & Janakiraman, S. (2008). Benefits and harms of prostate-specific antigen screening for prostate cancer: An evidence update for the U.S. Preventive Services Task Force. Annals of Internal Medicine, 149(3), 192–199.Google Scholar
  21. 21.
    Singh, V., et al. (2017). Phosphorylation: Implications in cancer. The Protein Journal, 36(1), 1–6.  https://doi.org/10.1007/s10930-017-9696-z.CrossRefPubMedGoogle Scholar
  22. 22.
    Hanahan, D., & Weinberg, R. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.  https://doi.org/10.1016/j.cell.2011.02.013.CrossRefGoogle Scholar
  23. 23.
    Hillen, F., & Griffioen, A. W. (2007). Tumour vascularization: Sprouting angiogenesis and beyond. Cancer and Metastasis Reviews, 26(3–4), 489–502.  https://doi.org/10.1007/s10555-007-9094-7.CrossRefPubMedGoogle Scholar
  24. 24.
    Flemming, A. (2015). Cancer stem cells: Targeting the root of cancer relapse. Nature Reviews Drug Discovery, 14(165).  https://doi.org/10.1038/nrd4560.
  25. 25.
    Jen, J., & Wang, Y.-C. (2016). Zinc finger proteins in cancer progression. Journal of Biomedical Science, 23(53).  https://doi.org/10.1186/s12929-016-0269-9.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gideon Tay Yee Chuen
    • 1
  • Timothy Lim Tyen Siang
    • 1
  • Shannon Lee Xin Ying
    • 1
  • Lee Wai Yeow
    • 2
  • Caroline G. Lee
    • 2
    • 3
    • 4
    Email author
  1. 1.Anglo-Chinese School (Independent)SingaporeSingapore
  2. 2.Department of Biochemistry, Graduate School for Integrative Sciences and EngineeringNational University SingaporeSingaporeSingapore
  3. 3.Division of Medical SciencesNational Cancer Centre SingaporeSingaporeSingapore
  4. 4.Cancer and Stem Cell Biology ProgrammeDuke-NUS Graduate Medical SchoolSingaporeSingapore

Personalised recommendations