Advertisement

Role of miRNAs in Plant-Microbe Interaction

  • Ravi Rajwanshi
  • Karam Jayanandi Devi
  • Gopa Rani Sharma
  • Beche Lal
Chapter

Abstract

MicroRNAs are a class of small RNAs that play a pivotal role in post-transcriptional gene regulation. The role of miRNA in fine-tuning gene expression is essential for growth and development of the plant as well as to cope up with various abiotic and biotic stress conditions. Plant immunity is a well-regulated and complex system. Plants initiate a series of host immune responses upon infestation by microbes. miRNAs have been implicated to play a role in plant-microbe interaction not only in regulation of plant-pathogen interaction but also during symbiosis which is a beneficial interaction. The expression of resistance genes, transcription factors, hormone signaling, and nutrient homeostasis genes is fine-tuned by miRNAs to bring a balance between plant growth and defense. The present chapter will provide an insight into the role of miRNAs in response to bacterial, fungal, viral, aphid infection as well as during symbiosis.

Keywords

miRNAs Plant-microbe interaction Target gene Plant defense 

References

  1. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221.  https://doi.org/10.1016/j.cell.2005.04.004PubMedCrossRefGoogle Scholar
  2. Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Biol 50(1):601–639CrossRefGoogle Scholar
  3. Baldrich P, Campo S, Wu MT, Liu TT, Hsing YI, San Segundo B (2015) MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 12(8):847–863.  https://doi.org/10.1080/15476286.2015.1050577PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barah P, Winge P, Kusnierczyk A, Tran DH, Bones AM (2013) Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection. PLoS One 8(3):e58987.  https://doi.org/10.1371/journal.pone.0058987PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Natl Acad Sci USA 104(29):12157–12162.  https://doi.org/10.1073/pnas.0705114104PubMedCrossRefGoogle Scholar
  6. Bazzini AA, Almasia NI, Manacorda CA, Mongelli VC, Conti G, Maroniche GA, Rodriguez MC, Distefano AJ, Hopp HE, del Vas M, Asurmendi S (2009) Virus infection elevates transcriptional activity of miR164a promoter in plants. BMC Plant Biol 9:152.  https://doi.org/10.1186/1471-2229-9-152PubMedPubMedCentralCrossRefGoogle Scholar
  7. Blackman RL, Eastop VF (2000) Aphids on the World’s crops. In: An identification and information guide, 2nd edn. John Wiley & Sons, Chichester, p 414, 59 figs, 51 platesGoogle Scholar
  8. Bohn GW, Kishaba AN, Toba HH (1972) Mechanisms of resistance to melon aphid in a muskmelon line. Hort Sci. 7:281–282Google Scholar
  9. Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, Unver T (2015) Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol J 13(3):409–420.  https://doi.org/10.1111/pbi.12346PubMedCrossRefGoogle Scholar
  10. Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88(1):7–37Google Scholar
  11. Bozorov TA, Pandey SP, Dinh ST, Kim SG, Heinrich M, Gase K, Baldwin IT (2012) DICER-like proteins and their role in plant-herbivore interactions in Nicotiana attenuata. J Integr Plant Biol 54(3):189–206.  https://doi.org/10.1111/j.1744-7909.2012.01104.xPubMedCrossRefGoogle Scholar
  12. Cao JY, Xu YP, Zhao L, Li SS, Cai XZ (2016) Tight regulation of the interaction between Brassica napus and Sclerotinia sclerotiorum at the microRNA level. Plant Mol Biol 92(1–2):39–55.  https://doi.org/10.1007/s11103-016-0494-3PubMedCrossRefGoogle Scholar
  13. Chakraborty S, Devi KJ, Deb B, Rajwanshi R (2016) Identification and characterization of novel microRNAs and their targets in Cucumis melo L.: an insilico approach. Focus Sci 2(1)CrossRefGoogle Scholar
  14. Chand SK, Nanda S, Rout E, Mohanty J, Mishra R, Joshi RK (2016) Identification and characterization of microRNAs in turmeric (Curcuma longa L.) responsive to infection with the pathogenic fungus Pythium aphanidermatum. Physiol Mol Plant Pathol 93:119–128CrossRefGoogle Scholar
  15. Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18(10):1179–1186.  https://doi.org/10.1101/gad.1201204PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen M, Cao Z (2015) Genome-wide expression profiling of microRNAs in poplar upon infection with the foliar rust fungus Melampsora larici-populina. BMC Genomics 16:696.  https://doi.org/10.1186/s12864-015-1891-8PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen J, Li WX, Xie D, Peng JR, Ding SW (2004) Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microrna in host gene expression. Plant Cell 16(5):1302–1313.  https://doi.org/10.1105/tpc.018986PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chen H, Arsovski AA, Yu K, Wang A (2016) Genome-wide investigation using sRNA-Seq, Degradome-Seq and Transcriptome-Seq reveals regulatory networks of microRNAs and their target genes in soybean during soybean mosaic virus infection. PLoS One 11(3):e0150582.  https://doi.org/10.1371/journal.pone.0150582PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chu C-C, Lee W-C, Guo W-Y, Pan S-M, Chen L-J, H-m L, Jinn T-L (2005) A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiol 139(1):425–436PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chugh S, Guha S, Rao IU (2009) Micropropagation of orchids: a review on the potential of different explants. Sci Hortic 122(4):507–520CrossRefGoogle Scholar
  21. Couzigou JM, Lauressergues D, Andre O, Gutjahr C, Guillotin B, Becard G, Combier JP (2017) Positive gene regulation by a natural protective miRNA enables arbuscular mycorrhizal symbiosis. Cell Host Microbe 21(1):106–112.  https://doi.org/10.1016/j.chom.2016.12.001PubMedCrossRefGoogle Scholar
  22. De Luis A, Markmann K, Cognat V, Holt DB, Charpentier M, Parniske M, Stougaard J, Voinnet O (2012) Two microRNAs linked to nodule infection and nitrogen-fixing ability in the legume Lotus japonicus. Plant Physiol 160(4):2137–2154.  https://doi.org/10.1104/pp.112.204883PubMedPubMedCentralCrossRefGoogle Scholar
  23. Devi KJ, Chakraborty S, Deb B, Rajwanshi R (2016) Computational identification and functional annotation of microRNAs and their targets from expressed sequence tags (ESTs) and genome survey sequence (GSSs) of Coffea arabica L. Plant Gene 6:30–42CrossRefGoogle Scholar
  24. Devi KJ, Saha P, Chakraborty S, Rajwanshi R (2018) Computational identification and functional annotation of microRNAs and their targets in three species of kiwifruit (Actinidia spp.). Indian J Plant Physiol 23(1):179–191CrossRefGoogle Scholar
  25. El-Sharkawy MA (2004) Cassava biology and physiology. Plant Mol Biol 56(4):481–501PubMedCrossRefGoogle Scholar
  26. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of miRNA genes. PLoS One 2:e219PubMedPubMedCentralCrossRefGoogle Scholar
  27. Feng J, Lin R, Chen J (2013) Alteration of tomato microRNAs expression during fruit development upon cucumber mosaic virus and Tomato aspermy virus infection. Mol Biol Rep 40(5):3713–3722.  https://doi.org/10.1007/s11033-012-2447-5PubMedCrossRefGoogle Scholar
  28. Formey D, Sallet E, Lelandais-Brière C, Ben C, Bustos-Sanmamed P, Niebel A, Frugier F, Combier JP, Debellé F, Hartmann C (2014) The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biol 15(9):457PubMedPubMedCentralCrossRefGoogle Scholar
  29. Foyer CH, Rasool B, Davey JW, Hancock RD (2016) Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation. J Exp Bot 67(7):2025–2037.  https://doi.org/10.1093/jxb/erw079PubMedCrossRefGoogle Scholar
  30. Garzo E, Soria C, Gómez-Guillamón ML, Fereres A (2002) Feeding behavior of Aphis gossypii on resistant accessions of different melon genotypes (Cucumis melo). Phytoparasitica 30(2):129–140.  https://doi.org/10.1007/bf02979695CrossRefGoogle Scholar
  31. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930PubMedCrossRefGoogle Scholar
  32. Guo W, Wu G, Yan F, Lu Y, Zheng H, Lin L, Chen H, Chen J (2012) Identification of novel Oryza sativa miRNAs in deep sequencing-based small RNA libraries of rice infected with Rice stripe virus. PLoS One 7(10):e46443.  https://doi.org/10.1371/journal.pone.0046443PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hernandez-Blanco C, Feng DX, Hu J, Sanchez-Vallet A, Deslandes L, Llorente F, Berrocal-Lobo M, Keller H, Barlet X, Sanchez-Rodriguez C, Anderson LK, Somerville S, Marco Y, Molina A (2007) Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19(3):890–903.  https://doi.org/10.1105/tpc.106.048058PubMedPubMedCentralCrossRefGoogle Scholar
  34. Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229(4):1009–1014.  https://doi.org/10.1007/s00425-009-0889-3PubMedCrossRefGoogle Scholar
  35. James EK, Olivares FL (1998) Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit Rev Plant Sci 17(1):77–119CrossRefGoogle Scholar
  36. Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246.  https://doi.org/10.1146/annurev-phyto-073009-114457PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kettles GJ, Drurey C, Schoonbeek HJ, Maule AJ, Hogenhout SA (2013) Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. New Phytol 198(4):1178–1190.  https://doi.org/10.1111/nph.12218PubMedCrossRefGoogle Scholar
  38. Khraiwesh B, Zhu JK, Zhu J (2012) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta 1819(2):137–148.  https://doi.org/10.1016/j.bbagrm.2011.05.001PubMedCrossRefGoogle Scholar
  39. Klingler J, Powell G, Thompson GA, Isaacs R (1998) Phloem specific aphid resistance in Cucumis melo line AR 5: effects on feeding behaviour and performance of Aphis gossypii. Entomol Exp Appl 86(1):79–88.  https://doi.org/10.1046/j.1570-7458.1998.00267.xCrossRefGoogle Scholar
  40. Kumar A, Sarma Y (2012) Characterization of Ralstonia solanacearum causing bacterial wilt in ginger. Indian Phytopathol 57:12–17Google Scholar
  41. Kumar D, Dutta S, Singh D, Prabhu KV, Kumar M, Mukhopadhyay K (2017) Uncovering leaf rust responsive miRNAs in wheat (Triticum aestivum L.) using high-throughput sequencing and prediction of their targets through degradome analysis. Planta 245(1):161–182.  https://doi.org/10.1007/s00425-016-2600-9PubMedCrossRefGoogle Scholar
  42. Kundu A, Paul S, Dey A, Pal A (2017) High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean yellow mosaic India virus inoculation highlighting stress regulation. Plant Sci 257:96–105.  https://doi.org/10.1016/j.plantsci.2017.01.016PubMedCrossRefGoogle Scholar
  43. Lauressergues D, Delaux PM, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier JP (2012) The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J 72(3):512–522PubMedCrossRefGoogle Scholar
  44. Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215(2):239–247.  https://doi.org/10.1007/s00425-002-0750-4PubMedCrossRefGoogle Scholar
  45. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152(4):2222–2231.  https://doi.org/10.1104/pp.109.151803PubMedPubMedCentralCrossRefGoogle Scholar
  46. Lian S, Cho WK, Kim SM, Choi H, Kim KH (2016) Time-course small RNA profiling reveals rice miRNAs and their target genes in response to rice stripe virus infection. PLoS One 11(9):e0162319.  https://doi.org/10.1371/journal.pone.0162319PubMedPubMedCentralCrossRefGoogle Scholar
  47. Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S (2007) Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J 51(6):941–954PubMedCrossRefGoogle Scholar
  48. Louis J, Shah J (2013) Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. Front Plant Sci 4:213.  https://doi.org/10.3389/fpls.2013.00213
  49. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in populus. Plant J 55(1):131–151.  https://doi.org/10.1111/j.1365-313X.2008.03497.xPubMedCrossRefGoogle Scholar
  50. Luan Y, Cui J, Zhai J, Li J, Han L, Meng J (2015) High-throughput sequencing reveals differential expression of miRNAs in tomato inoculated with Phytophthora infestans. Planta 241(6):1405–1416.  https://doi.org/10.1007/s00425-015-2267-7PubMedCrossRefGoogle Scholar
  51. Luan Y, Cui J, Wang W, Meng J (2016) MiR1918 enhances tomato sensitivity to Phytophthora infestans infection. Sci Rep 6:35858.  https://doi.org/10.1038/srep35858PubMedPubMedCentralCrossRefGoogle Scholar
  52. Maekawa T, Cheng W, Spiridon LN, Töller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA, Somssich IE, Takken FLW, Petrescu AJ, Chai J, Schulze-Lefert P (2011) Coiled-coil domain-dependent Homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9(3):187–199CrossRefGoogle Scholar
  53. Morkunas I, Mai VC, Gabryś B (2011) Phytohormonal signaling in plant responses to aphid feeding. Acta Physiol Plant 33(6):2057–2073.  https://doi.org/10.1007/s11738-011-0751-7CrossRefGoogle Scholar
  54. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439.  https://doi.org/10.1126/science.1126088PubMedCrossRefGoogle Scholar
  55. Naya L, Paul S, Valdes-Lopez O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Reyes JL, Hernandez G (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9(1):e84416.  https://doi.org/10.1371/journal.pone.0084416PubMedPubMedCentralCrossRefGoogle Scholar
  56. Nejat N, Mantri N (2017) Plant immune system: crosstalk between responses to biotic and Abiotic stresses the missing link in understanding plant defence. Curr Issues Mol Biol 23:1–16.  https://doi.org/10.21775/cimb.023.001PubMedCrossRefGoogle Scholar
  57. Niu D, Lii YE, Chellappan P, Lei L, Peralta K, Jiang C, Guo J, Coaker G, Jin H (2016) miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat Commun 7:11324.  https://doi.org/10.1038/ncomms11324PubMedPubMedCentralCrossRefGoogle Scholar
  58. Nova-Franco B, Iniguez LP, Valdes-Lopez O, Alvarado-Affantranger X, Leija A, Fuentes SI, Ramirez M, Paul S, Reyes JL, Girard L, Hernandez G (2015) The micro-RNA72c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis. Plant Physiol 168(1):273–291.  https://doi.org/10.1104/pp.114.255547PubMedPubMedCentralCrossRefGoogle Scholar
  59. OgawaK KS, Takabe K, Asada S (1995) Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immunogold labeling after rapid freezing and substitution method. Plant Cell Physiol 36:565–573Google Scholar
  60. Ouyang S, Park G, Atamian HS, Han CS, Stajich JE, Kaloshian I, Borkovich KA (2014) MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum. PLoS Pathog 10(10):e1004464.  https://doi.org/10.1371/journal.ppat.1004464PubMedPubMedCentralCrossRefGoogle Scholar
  61. Pandey SP, Baldwin IT (2007) RNA-directed RNA polymerase 1 (RdR1) mediates the resistance of Nicotiana attenuata to herbivore attack in nature. Plant J 50(1):40–53.  https://doi.org/10.1111/j.1365-313X.2007.03030.xPubMedCrossRefGoogle Scholar
  62. Pandey SP, Shahi P, Gase K, Baldwin IT (2008) Herbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata. Proc Natl Acad Sci USA 105(12):4559–4564.  https://doi.org/10.1073/pnas.0711363105PubMedCrossRefGoogle Scholar
  63. Park YJ, Lee HJ, Kwak KJ, Lee K, Hong SW, Kang H (2014) MicroRNA400-guided cleavage of pentatricopeptide repeat protein mRNAs renders Arabidopsis thaliana more susceptible to pathogenic bacteria and fungi. Plant Cell Physiol 55(9):1660–1668.  https://doi.org/10.1093/pcp/pcu096PubMedCrossRefGoogle Scholar
  64. Pérez-Quintero ÁL, Quintero A, Urrego O, Vanegas P, López C (2012) Bioinformatic identification of cassava miRNAs differentially expressed in response to infection by Xanthomonas axonopodis pv. manihotis. BMC Plant Biol 12(1):29.  https://doi.org/10.1186/1471-2229-12-29PubMedPubMedCentralCrossRefGoogle Scholar
  65. Prasath D, Karthika R, Habeeba NT, Suraby EJ, Rosana OB, Shaji A, Eapen SJ, Deshpande U, Anandaraj M (2014) Comparison of the transcriptomes of ginger (Zingiber officinale Rosc.) and mango ginger (Curcuma amada Roxb.) in response to the bacterial wilt infection. PLoS One 9(6):e99731.  https://doi.org/10.1371/journal.pone.0099731PubMedPubMedCentralCrossRefGoogle Scholar
  66. Qazi J, Amin I, Mansoor S, Iqbal MJ, Briddon RW (2007) Contribution of the satellite encoded gene βC1 to cotton leaf curl disease symptoms. Virus Res 128(1–2):135–139PubMedCrossRefGoogle Scholar
  67. Rajwanshi R, Chakraborty S, Jayanandi K, Deb B, Lightfoot DA (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127(12):2525–2543.  https://doi.org/10.1007/s00122-014-2391-yPubMedCrossRefGoogle Scholar
  68. Rawat N, Kiran SP, Du D, Gmitter FG Jr, Deng Z (2015) Comprehensive meta-analysis, co-expression, and miRNA nested network analysis identifies gene candidates in citrus against huanglongbing disease. BMC Plant Biol 15:184.  https://doi.org/10.1186/s12870-015-0568-4PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sanchez-Rodriguez C, Estevez JM, Llorente F, Hernandez-Blanco C, Jorda L, Pagan I, Berrocal M, Marco Y, Somerville S, Molina A (2009) The ERECTA receptor-like kinase regulates cell wall-mediated resistance to pathogens in Arabidopsis thaliana. Mol Plant-Microbe Interact 22(8):953–963.  https://doi.org/10.1094/MPMI-22-8-0953PubMedCrossRefGoogle Scholar
  70. Sattar S, Song Y, Anstead JA, Sunkar R, Thompson GA (2012) Cucumis melo microRNA expression profile during aphid herbivory in a resistant and susceptible interaction. Mol Plant-Microbe Interact 25(6):839–848.  https://doi.org/10.1094/MPMI-09-11-0252PubMedCrossRefGoogle Scholar
  71. Sattar S, Addo-Quaye C, Thompson GA (2016) miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo. Plant Cell Environ 39(6):1216–1227.  https://doi.org/10.1111/pce.12645PubMedCrossRefGoogle Scholar
  72. Shiu S-H, Karlowski WM, Pan R, Tzeng Y-H, Mayer KF, Li W-H (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16(5):1220–1234PubMedPubMedCentralCrossRefGoogle Scholar
  73. Singh N, Srivastava S, Shasany AK, Sharma A (2016) Identification of miRNAs and their targets involved in the secondary metabolic pathways of Mentha spp. Comput Biol Chem 64:154–162.  https://doi.org/10.1016/j.compbiolchem.2016.06.004PubMedCrossRefGoogle Scholar
  74. Soto-Suarez M, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B (2017) The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci Rep 7:44898.  https://doi.org/10.1038/srep44898
  75. Sun Z, He Y, Li J, Wang X, Chen J (2015) Genome-wide characterization of rice black streaked dwarf virus-responsive microRNAs in rice leaves and roots by small RNA and degradome sequencing. Plant Cell Physiol 56(4):688–699.  https://doi.org/10.1093/pcp/pcu213PubMedCrossRefGoogle Scholar
  76. Thiebaut F, Rojas CA, Grativol C, Motta MR, Vieira T, Regulski M, Martienssen RA, Farinelli L, Hemerly AS, Ferreira PC (2014) Genome-wide identification of microRNA and siRNA responsive to endophytic beneficial diazotrophic bacteria in maize. BMC Genomics 15:766.  https://doi.org/10.1186/1471-2164-15-766PubMedPubMedCentralCrossRefGoogle Scholar
  77. Vanacker H, Carver TL, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol 123(4):1289–1300PubMedPubMedCentralCrossRefGoogle Scholar
  78. Varallyay E, Valoczi A, Agyi A, Burgyan J, Havelda Z (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29(20):3507–3519.  https://doi.org/10.1038/emboj.2010.215PubMedPubMedCentralCrossRefGoogle Scholar
  79. Varma A, Verma S, Sahay N, Bütehorn B, Franken P (1999) Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol 65(6):2741–2744PubMedPubMedCentralGoogle Scholar
  80. Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, Heier T, Hückelhoven R, Neumann C, von Wettstein D (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA 102(38):13386–13391PubMedCrossRefGoogle Scholar
  81. Wang Y, Li P, Cao X, Wang X, Zhang A, Li X (2009) Identification and expression analysis of miRNAs from nitrogen-fixing soybean nodules. Biochem Biophys Res Commun 378(4):799–803.  https://doi.org/10.1016/j.bbrc.2008.11.140PubMedCrossRefGoogle Scholar
  82. Wang Y, Wang L, Zou Y, Chen L, Cai Z, Zhang S, Zhao F, Tian Y, Jiang Q, Ferguson BJ, Gresshoff PM, Li X (2014) Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. Plant Cell 26(12):4782–4801.  https://doi.org/10.1105/tpc.114.131607PubMedPubMedCentralCrossRefGoogle Scholar
  83. Wang J, Tang Y, Yang Y, Ma N, Ling X, Kan J, He Z, Zhang B (2016) Cotton leaf curl multan virus-derived viral small RNAs can target cotton genes to promote viral infection. Front Plant Sci 7:1162.  https://doi.org/10.3389/fpls.2016.01162PubMedPubMedCentralCrossRefGoogle Scholar
  84. Xia X, Shao Y, Jiang J, Du X, Sheng L, Chen F, Fang W, Guan Z, Chen S (2015) MicroRNA expression profile during Aphid feeding in Chrysanthemum (Chrysanthemum morifolium). PLoS One 10(12):e0143720.  https://doi.org/10.1371/journal.pone.0143720PubMedPubMedCentralCrossRefGoogle Scholar
  85. Xu W, Meng Y, Wise RP (2014a) Mla- and Rom1-mediated control of microRNA398 and chloroplast copper/zinc superoxide dismutase regulates cell death in response to the barley powdery mildew fungus. New Phytol 201(4):1396–1412.  https://doi.org/10.1111/nph.12598PubMedCrossRefGoogle Scholar
  86. Xu D, Mou G, Wang K, Zhou G (2014b) MicroRNAs responding to southern rice black-streaked dwarf virus infection and their target genes associated with symptom development in rice. Virus Res 190:60–68.  https://doi.org/10.1016/j.virusres.2014.07.007PubMedCrossRefGoogle Scholar
  87. Yan Z, Hossain MS, Valdes-Lopez O, Hoang NT, Zhai J, Wang J, Libault M, Brechenmacher L, Findley S, Joshi T, Qiu L, Sherrier DJ, Ji T, Meyers BC, Xu D, Stacey G (2016) Identification and functional characterization of soybean root hair microRNAs expressed in response to Bradyrhizobium japonicum infection. Plant Biotechnol J 14(1):332–341.  https://doi.org/10.1111/pbi.12387PubMedCrossRefGoogle Scholar
  88. Yang T, Xue L, An L (2007) Functional diversity of miRNA in plants. Plant Sci 172(3):423–432.  https://doi.org/10.1016/j.plantsci.2006.10.009CrossRefGoogle Scholar
  89. Yang L, Mu X, Liu C, Cai J, Shi K, Zhu W, Yang Q (2015) Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J Integr Plant Biol 57(12):1078–1088.  https://doi.org/10.1111/jipb.12348PubMedCrossRefGoogle Scholar
  90. Ye W, Shen CH, Lin Y, Chen PJ, Xu X, Oelmuller R, Yeh KW, Lai Z (2014) Growth promotion-related miRNAs in Oncidium orchid roots colonized by the endophytic fungus Piriformospora indica. PLoS One 9(1):e84920.  https://doi.org/10.1371/journal.pone.0084920PubMedPubMedCentralCrossRefGoogle Scholar
  91. Yin X, Wang J, Cheng H, Wang X, Yu D (2013) Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus. Planta 237(5):1213–1225.  https://doi.org/10.1007/s00425-012-1835-3PubMedCrossRefGoogle Scholar
  92. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75(1–2):93–105.  https://doi.org/10.1007/s11103-010-9710-8PubMedCrossRefGoogle Scholar
  93. Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Li T (2017) Md-miR156ab and Md-miR395 target WRKY transcription factors to influence apple resistance to leaf spot disease. Front Plant Sci 8:526.  https://doi.org/10.3389/fpls.2017.00526PubMedPubMedCentralCrossRefGoogle Scholar
  94. Zhao H, Sun R, Albrecht U, Padmanabhan C, Wang A, Coffey MD, Girke T, Wang Z, Close TJ, Roose M, Yokomi RK, Folimonova S, Vidalakis G, Rouse R, Bowman KD, Jin H (2013) Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus huanglongbing disease. Mol Plant 6(2):301–310.  https://doi.org/10.1093/mp/sst002PubMedPubMedCentralCrossRefGoogle Scholar
  95. Zurbriggen MD, Carrillo N, Tognetti VB, Melzer M, Peisker M, Hause B, Hajirezaei MR (2009) Chloroplast-generated reactive oxygen species play a major role in localized cell death during the non-host interaction between tobacco and Xanthomonas campestris pv. vesicatoria. Plant J 60(6):962–973PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ravi Rajwanshi
    • 1
  • Karam Jayanandi Devi
    • 1
  • Gopa Rani Sharma
    • 1
  • Beche Lal
    • 2
  1. 1.Department of BiotechnologyAssam UniversitySilchar, AssamIndia
  2. 2.National Bureau of Plant Genetic Resources, Plant Quarantine DivisionIndian Council of Agricultural Research (ICAR)New DelhiIndia

Personalised recommendations