Emerging Epigenetic Targets and Their Implications in Cancer Therapy



Epigenetics refers to alterations in the chromatin that regulate gene expression without changing the nucleotide sequence of DNA. An “epigenetic code” constituted by DNA methylation and different posttranslational modifications of histone proteins is crucial for the regulation of gene expression status in various cells. Maintenance of cellular identity and differentiation in a specific developmental context is regulated through maintenance of the chromatin structure of the cells. This process involves both genetic and epigenetic mechanisms. There is emerging evidence that defects in epigenetic regulation are often observed in human cancer. The reversibility of epigenetic modifications and an improved understanding of epigenetic aberrations in the etiology of cancer promise identification of novel drug targets and development of epigenetic-based therapeutic avenues for cancer. Many such compounds that target chromatin-associated proteins and proteins involved in epigenetic regulation are currently under preclinical and clinical trials. In this chapter, we have summarized the discoveries of epigenetic-based therapies for cancer and highlighted the advancement in this field that provides a new future perspective.


Epigenetic regulation DNA methylation Posttranslational histone modification and microRNA/miRNA 


  1. Alpini G, Glaser SS, Zhang JP, Francis H, Han Y, Gong J, Stokes A, Francis T, Hughart N, Hubble L, Zhuang SM, Meng F (2011) Regulation of placenta growth factor by microRNA-125b in hepatocellular cancer. J Hepatol 55:1339–1345PubMedPubMedCentralCrossRefGoogle Scholar
  2. Amatangelo MD, Garipov A, Li H, Conejo-Garcia JR, Speicher DW, Zhang R (2013) Three-dimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition. Cell Cycle 12:2113–2119PubMedPubMedCentralCrossRefGoogle Scholar
  3. Amodio N, Rossi M, Raimondi L, Pitari MR, Botta C, Tagliaferri P, Tassone P (2015) miR-29s: a family of epi-miRNAs with therapeutic implications in hematologic malignancies. Oncotarget 6:12837–12861PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asangani IA, Harms PW, Dodson L, Pandhi M, Kunju LP, Maher CA, Fullen DR, Johnson TM, Giordano TJ, Palanisamy N, Chinnaiyan AM (2012) Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma. Oncotarget 3:1011–1025PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, Escara-Wilke J, Wilder-Romans K, Dhanireddy S, Engelke C, Iyer MK, Jing X, Wu YM, Cao X, Qin ZS, Wang S, Feng FY, Chinnaiyan AM (2014) Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510:278–282PubMedPubMedCentralCrossRefGoogle Scholar
  6. Azmi AS, Beck FW, Bao B, Mohammad RM, Sarkar FH (2011) Aberrant epigenetic grooming of miRNAs in pancreatic cancer: a systems biology perspective. Epigenomics 3:747–759PubMedPubMedCentralCrossRefGoogle Scholar
  7. Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, Goel A (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 70:6609–6618PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  9. Baylin SB, Jones PA (2016) Epigenetic Determinants of Cancer. Cold Spring Harb Perspect Biol 8PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21PubMedCrossRefGoogle Scholar
  11. Borno ST, Fischer A, Kerick M, Falth M, Laible M, Brase JC, Kuner R, Dahl A, Grimm C, Sayanjali B, Isau M, Rohr C, Wunderlich A, Timmermann B, Claus R, Plass C, Graefen M, Simon R, Demichelis F, Rubin MA, Sauter G, Schlomm T, Sultmann H, Lehrach H, Schweiger MR (2012) Genome-wide DNA methylation events in TMPRSS2-ERG fusion-negative prostate cancers implicate an EZH2-dependent mechanism with miR-26a hypermethylation. Cancer Discov 2:1024–1035PubMedCrossRefGoogle Scholar
  12. Boulikas T (1989) DNA strand breaks alter histone ADP-ribosylation. Proc Natl Acad Sci U S A 86:3499–3503PubMedPubMedCentralCrossRefGoogle Scholar
  13. Boumber Y, Issa JP (2011) Epigenetics in cancer: what’s the future? Oncol Williston Park 25:220–226. 228Google Scholar
  14. Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51:881–890PubMedPubMedCentralGoogle Scholar
  15. Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ, Ross K, Chang CY, Bosco J, West N, Morse E, Lin K, Shen JP, Kwiatkowski NP, Gheldof N, Dekker J, Deangelo DJ, Carr SA, Schreiber SL, Golub TR, Ebert BL (2010) Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci U S A 107:12617–12622PubMedPubMedCentralCrossRefGoogle Scholar
  16. Calin GA, Croce CM (2006) MicroRNA signatures in human cancers. Nat Rev Cancer 6:857–866PubMedCrossRefGoogle Scholar
  17. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cao P, Deng Z, Wan M, Huang W, Cramer SD, Xu J, Lei M, Sui G (2010) MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 9:108PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cattaneo M, Pelosi E, Castelli G, Cerio AM, D’angio A, Porretti L, Rebulla P, Pavesi L, Russo G, Giordano A, Turri J, Cicconi L, Lo-Coco F, Testa U, Biunno I (2015) A miRNA Signature in Human Cord Blood Stem and Progenitor Cells as Potential Biomarker of Specific Acute Myeloid Leukemia Subtypes. J Cell Physiol 230:1770–1780PubMedCrossRefGoogle Scholar
  20. Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferre F, Bourque C, Burke CJ, Turner L, Uong A, Johnson LA, Beroukhim R, Mermel CH, Loda M, Ait-Si-Ali S, Garraway LA, Young RA, Zon LI (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471:513–517PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chaib H, Nebbioso A, Prebet T, Castellano R, Garbit S, Restouin A, Vey N, Altucci L, Collette Y (2012) Anti-leukemia activity of chaetocin via death receptor-dependent apoptosis and dual modulation of the histone methyl-transferase SUV39H1. Leukemia 26:662–674PubMedCrossRefGoogle Scholar
  22. Chaidos A, Caputo V, Gouvedenou K, Liu B, Marigo I, Chaudhry MS, Rotolo A, Tough DF, Smithers NN, Bassil AK, Chapman TD, Harker NR, Barbash O, Tummino P, Al-Mahdi N, Haynes AC, Cutler L, Le B, Rahemtulla A, Roberts I, Kleijnen M, Witherington JJ, Parr NJ, Prinjha RK, Karadimitris A (2014) Potent antimyeloma activity of the novel bromodomain inhibitors I-BET151 and I-BET762. Blood 123:697–705PubMedCrossRefGoogle Scholar
  23. Chang X, Han J, Pang L, Zhao Y, Yang Y, Shen Z (2009) Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9:40PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chang KH, King ONF, Tumber A, Woon ECY, Heightman TD, Mcdonough MA, Schofield CJ, Rose NR (2011) Inhibition of histone demethylases by 4-carboxy-2,2′-bipyridyl compounds. ChemMedChem 6:759–764PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chang KW, Chu TH, Gong NR, Chiang WF, Yang CC, Liu CJ, Wu CH, Lin SC (2013) miR-370 modulates insulin receptor substrate-1 expression and inhibits the tumor phenotypes of oral carcinoma. Oral Dis 19:611–619PubMedCrossRefGoogle Scholar
  26. Chen Y, Luo J, Tian R, Sun H, Zou S (2011) miR-373 negatively regulates methyl-CpG-binding domain protein 2 (MBD2) in hilar cholangiocarcinoma. Dig Dis Sci 56:1693–1701PubMedCrossRefGoogle Scholar
  27. Chen Z, Liu S, Tian L, Wu M, Ai F, Tang W, Zhao L, Ding J, Zhang L, Tang A (2015) miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget 6:38139–38150PubMedPubMedCentralGoogle Scholar
  28. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840PubMedCrossRefGoogle Scholar
  29. Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, Mowen KA, Bertone P, Silva JC, Zernicka-Goetz M, Nielsen ML, Gurdon JB, Kouzarides T (2014) Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 507:104–108PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cimmino L, Abdel-Wahab O, Levine RL, Aifantis I (2011) TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 9:193–204PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cohen EE, Zhu H, Lingen MW, Martin LE, Kuo WL, Choi EA, Kocherginsky M, Parker JS, Chung CH, Rosner MR (2009) A feed-forward loop involving protein kinase Calpha and microRNAs regulates tumor cell cycle. Cancer Res 69:65–74PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cortez CC, Jones PA (2008) Chromatin, cancer and drug therapies. Mutat Res 647:44–51PubMedPubMedCentralCrossRefGoogle Scholar
  33. Creagan ET, Schaid DJ, Hartmann LC, Loprinzi CL (1993) A phase II study of 5,6-dihydro-5-azacytidine hydrochloride in disseminated malignant melanoma. Am J Clin Oncol 16:243–244PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cress WD, Seto E (2000) Histone deacetylases, transcriptional control, and cancer. J Cell Physiol 184:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  35. Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM (2011) Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20:53–65PubMedPubMedCentralCrossRefGoogle Scholar
  36. Datta J, Kutay H, Nasser MW, Nuovo GJ, Wang B, Majumder S, Liu CG, Volinia S, Croce CM, Schmittgen TD, Ghoshal K, Jacob ST (2008) Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. Cancer Res 68:5049–5058PubMedPubMedCentralCrossRefGoogle Scholar
  37. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, Lecluse Y, Plo I, Dreyfus FJ, Marzac C, Casadevall N, Lacombe C, Romana SP, Dessen P, Soulier J, Viguie F, Fontenay M, Vainchenker W, Bernard OA (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301PubMedCrossRefPubMedCentralGoogle Scholar
  38. Dillhoff M, Liu J, Frankel W, Croce C, Bloomston M (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J Gastrointest Surg 12:2171–2176PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dohi O, Yasui K, Gen Y, Takada H, Endo M, Tsuji K, Konishi C, Yamada N, Mitsuyoshi H, Yagi N, Naito Y, Tanaka S, Arii S, Yoshikawa T (2013) Epigenetic silencing of miR-335 and its host gene MEST in hepatocellular carcinoma. Int J Oncol 42:411–418PubMedCrossRefPubMedCentralGoogle Scholar
  40. Duursma AM, Kedde M, Schrier M, LE Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14:872–877PubMedPubMedCentralCrossRefGoogle Scholar
  41. Ehrbrecht A, Muller U, Wolter M, Hoischen A, Koch A, Radlwimmer B, Actor B, Mincheva A, Pietsch T, Lichter P, Reifenberger G, Weber RG (2006) Comprehensive genomic analysis of desmoplastic medulloblastomas: identification of novel amplified genes and separate evaluation of the different histological components. J Pathol 208:554–563PubMedCrossRefGoogle Scholar
  42. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV, Waghorn K, Zoi K, Ross FM, Reiter A, Hochhaus A, Drexler HG, Duncombe A, Cervantes F, Oscier D, Boultwood J, Grand FH, Cross NC (2010) Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 42:722–726PubMedCrossRefGoogle Scholar
  43. Esquela-Kerscher A, Slack FJ (2006) Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6:259–269PubMedCrossRefGoogle Scholar
  44. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, Bussaglia E, Prat J, Harkes IC, Repasky EA, Gabrielson E, Schutte M, Baylin SB, Herman JG (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–569PubMedCrossRefGoogle Scholar
  45. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A 104:15805–15810PubMedPubMedCentralCrossRefGoogle Scholar
  46. Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153PubMedCrossRefPubMedCentralGoogle Scholar
  47. Fenaux P, Ades L (2009) Review of azacitidine trials in Intermediate-2-and High-risk myelodysplastic syndromes. Leuk Res 33(Suppl 2):S7–S11PubMedCrossRefPubMedCentralGoogle Scholar
  48. Filippakopoulos P, Knapp S (2012) The bromodomain interaction module. FEBS Lett 586:2692–2704PubMedCrossRefPubMedCentralGoogle Scholar
  49. Filippakopoulos P, Picaud S, Mangos M, Keates T, Lambert JP, Barsyte-Lovejoy D, Felletar I, Volkmer R, Muller S, Pawson T, Gingras AC, Arrowsmith CH, Knapp S (2012) Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149:214–231PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fiskus W, Wang Y, Sreekumar A, Buckley KM, Shi H, Jillella A, Ustun C, Rao R, Fernandez P, Chen J, Balusu R, Koul S, Atadja P, Marquez VE, Bhalla KN (2009) Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells. Blood 114:2733–2743PubMedPubMedCentralCrossRefGoogle Scholar
  51. Formosa A, Lena AM, Markert EK, Cortelli S, Miano R, Mauriello A, Croce N, Vandesompele J, Mestdagh P, Finazzi-Agro E, Levine AJ, Melino G, Bernardini S, Candi E (2013) DNA methylation silences miR-132 in prostate cancer. Oncogene 32:127–134PubMedCrossRefGoogle Scholar
  52. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033PubMedCrossRefGoogle Scholar
  53. French CA (2010) Demystified molecular pathology of NUT midline carcinomas. J Clin Pathol 63:492–496PubMedCrossRefGoogle Scholar
  54. Friedman JM, Jones PA (2009) MicroRNAs: critical mediators of differentiation, development and disease. Swiss Med Wkly 139:466–472PubMedPubMedCentralGoogle Scholar
  55. Garzon R, Calin GA, Croce CM (2009a) MicroRNAs in Cancer. Annu Rev Med 60:167–179PubMedCrossRefGoogle Scholar
  56. Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, Andreeff M, Croce CM (2009b) MicroRNA 29b functions in acute myeloid leukemia. Blood 114:5331–5341PubMedPubMedCentralCrossRefGoogle Scholar
  57. Ghoshal K, Datta J, Majumder S, Bai S, Kutay H, Motiwala T, Jacob ST (2005) 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25:4727–4741PubMedPubMedCentralCrossRefGoogle Scholar
  58. Glozak MA, Seto E (2007) Histone deacetylases and cancer. Oncogene 26:5420–5432PubMedCrossRefGoogle Scholar
  59. Gong AY, Eischeid AN, Xiao J, Zhao J, Chen D, Wang ZY, Young CY, Chen XM (2012) miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 12:492PubMedPubMedCentralCrossRefGoogle Scholar
  60. Greenwald RJ, Tumang JR, Sinha A, Currier N, Cardiff RD, Rothstein TL, Faller DV, Denis GV (2004) E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood 103:1475–1484PubMedCrossRefGoogle Scholar
  61. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352PubMedCrossRefGoogle Scholar
  62. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  63. Hayami S, Kelly JD, Cho HS, Yoshimatsu M, Unoki M, Tsunoda T, Field HI, Neal DE, Yamaue H, Ponder BA, Nakamura Y, Hamamoto R (2011) Overexpression of LSD1 contributes to human carcinogenesis through chromatin regulation in various cancers. Int J Cancer 128:574–586PubMedCrossRefGoogle Scholar
  64. Heinemann B, Nielsen JM, Hudlebusch HR, Lees MJ, Larsen DV, Boesen T, Labelle M, Gerlach LO, Birk P, Helin K (2014) Inhibition of demethylases by GSK-J1/J4. Nature 514:E1–E2PubMedCrossRefGoogle Scholar
  65. Helin K, Dhanak D (2013) Chromatin proteins and modifications as drug targets. Nature 502:480–488PubMedCrossRefGoogle Scholar
  66. Herold JM, Ingerman LA, Gao C, Frye SV (2011) Drug discovery toward antagonists of methyl-lysine binding proteins. Curr Chem Genomics 5:51–61PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hirota T, Lipp JJ, Toh BH, Peters JM (2005) Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–1180PubMedCrossRefGoogle Scholar
  68. Hossain MB, Vahter M, Concha G, Broberg K (2012) Low-level environmental cadmium exposure is associated with DNA hypomethylation in Argentinean women. Environ Health Perspect 120:879–884PubMedPubMedCentralCrossRefGoogle Scholar
  69. Huang H, Lin S, Garcia BA, Zhao Y (2015) Quantitative proteomic analysis of histone modifications. Chem Rev 115:2376–2418PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hulf T, Sibbritt T, Wiklund ED, Bert S, Strbenac D, Statham AL, Robinson MD, Clark SJ (2011) Discovery pipeline for epigenetically deregulated miRNAs in cancer: integration of primary miRNA transcription. BMC Genomics 12:54PubMedPubMedCentralCrossRefGoogle Scholar
  71. Humphreys KJ, Cobiac L, le Leu RK, van der Hoek MB, Michael MZ (2013) Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog 52:459–474PubMedCrossRefGoogle Scholar
  72. Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, Akashi K, Gilliland DG (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:587–596PubMedCrossRefGoogle Scholar
  73. Hwang JJ, Kim YS, Kim T, Kim MJ, Jeong IG, Lee JH, Choi J, Jang S, Ro S, Kim CS (2012) A novel histone deacetylase inhibitor, CG200745, potentiates anticancer effect of docetaxel in prostate cancer via decreasing Mcl-1 and Bcl-XL. Invest New Drugs 30:1434–1442PubMedCrossRefGoogle Scholar
  74. Ismail IH, Mcdonald D, Strickfaden H, Xu Z, Hendzel MJ (2013) A small molecule inhibitor of polycomb repressive complex 1 inhibits ubiquitin signaling at DNA double-strand breaks. J Biol Chem 288:26944–26954PubMedPubMedCentralCrossRefGoogle Scholar
  75. Iyer NG, Ozdag H, Caldas C (2004) p300/CBP and cancer. Oncogene 23:4225–4231PubMedCrossRefGoogle Scholar
  76. James LI, Barsyte-Lovejoy D, Zhong N, Krichevsky L, Korboukh VK, Herold JM, Macnevin CJ, Norris JL, Sagum CA, Tempel W, Marcon E, Guo H, Gao C, Huang XP, Duan S, Emili A, Greenblatt JF, Kireev DB, Jin J, Janzen WP, Brown PJ, Bedford MT, Arrowsmith CH, Frye SV (2013) Discovery of a chemical probe for the L3MBTL3 methyllysine reader domain. Nat Chem Biol 9:184–191PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, Dipersio J, Klimek V, Slack J, de Castro C, Ravandi F, Helmer R 3rd, Shen L, Nimer SD, Leavitt R, Raza A, Saba H (2006) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803PubMedCrossRefGoogle Scholar
  78. Kantarjian H, Oki Y, Garcia-Manero G, Huang X, O’brien S, Cortes J, Faderl S, Bueso-Ramos C, Ravandi F, Estrov Z, Ferrajoli A, Wierda W, Shan J, Davis J, Giles F, Saba HI, Issa JP (2007) Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109:52–57PubMedCrossRefGoogle Scholar
  79. Kim J, Bretz CL, Lee S (2015) Epigenetic instability of imprinted genes in human cancers. Nucleic Acids Res 43:10689–10699PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kippler M, Hossain MB, Lindh C, Moore SE, Kabir I, Vahter M, Broberg K (2012) Early life low-level cadmium exposure is positively associated with increased oxidative stress. Environ Res 112:164–170PubMedCrossRefGoogle Scholar
  81. Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J, Scott MP, Jin L, Smith JJ, Olhava EJ, Chesworth R, Moyer MP, Richon VM, Copeland RA, Keilhack H, Pollock RM, Kuntz KW (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 8:890–896PubMedCrossRefGoogle Scholar
  82. Kooistra SM, Helin K (2012) Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 13:297–311PubMedCrossRefGoogle Scholar
  83. Lautz TB, Naiditch JA, Clark S, Chu F, Madonna MB (2012) Efficacy of class I and II vs class III histone deacetylase inhibitors in neuroblastoma. J Pediatr Surg 47:1267–1271PubMedCrossRefGoogle Scholar
  84. Lavelle D, Saunthararajah Y, Vaitkus K, Singh M, Banzon V, Phiasivongsva P, Redkar S, Kanekal S, Bearss D, Shi C, Inloes R, Desimone J (2010) S110, a novel decitabine dinucleotide, increases fetal hemoglobin levels in baboons (P. anubis). J Transl Med 8:92PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lei Q, Liu X, Fu H, Sun Y, Wang L, Xu G, Wang W, Yu Z, Liu C, Li P, Feng J, Li G, Wu M (2016) miR-101 reverses hypomethylation of the PRDM16 promoter to disrupt mitochondrial function in astrocytoma cells. Oncotarget 7:5007–5022PubMedGoogle Scholar
  86. Li Q, Zou C, Han Z, Xiao H, Wei H, Wang W, Zhang L, Zhang X, Tang Q, Zhang C, Tao J, Wang X, Gao X (2013) MicroRNA-25 functions as a potential tumor suppressor in colon cancer by targeting Smad7. Cancer Lett 335:168–174PubMedCrossRefGoogle Scholar
  87. Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP, Yang ZQ (2009) Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 28:4491–4500PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7:2591–2600PubMedCrossRefGoogle Scholar
  89. Loidl P (1994) Histone acetylation: facts and questions. Chromosoma 103:441–449PubMedCrossRefGoogle Scholar
  90. Lu Z, Tian Y, Salwen HR, Chlenski A, Godley LA, Raj JU, Yang Q (2013) Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells. Anticancer Drugs 24:484–493PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lucas DM, Alinari L, West DA, Davis ME, Edwards RB, Johnson AJ, Blum KA, Hofmeister CC, Freitas MA, Parthun MR, Wang D, Lehman A, Zhang X, Jarjoura D, Kulp SK, Croce CM, Grever MR, Chen CS, Baiocchi RA, Byrd JC (2010) The novel deacetylase inhibitor AR-42 demonstrates pre-clinical activity in B-cell malignancies in vitro and in vivo. PLoS One 5:e10941PubMedPubMedCentralCrossRefGoogle Scholar
  92. Majid S, Dar AA, Saini S, Shahryari V, Arora S, Zaman MS, Chang I, Yamamura S, Tanaka Y, Chiyomaru T, Deng G, Dahiya R (2013) miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways. Clin Cancer Res 19:73–84PubMedCrossRefGoogle Scholar
  93. Mandl-Weber S, Meinel FG, Jankowsky R, Oduncu F, Schmidmaier R, Baumann P (2010) The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br J Haematol 149:518–528PubMedCrossRefGoogle Scholar
  94. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T (2007) MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–658PubMedPubMedCentralCrossRefGoogle Scholar
  95. Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A, Hottiger MO (2010) PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res 38:6350–6362PubMedPubMedCentralCrossRefGoogle Scholar
  96. Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51PubMedCrossRefGoogle Scholar
  97. Moazzen S, Dolatkhah R, Tabrizi JS, Shaarbafi J, Alizadeh BZ, de Bock GH, Dastgiri S (2017) Folic acid intake and folate status and colorectal cancer risk: A systematic review and meta-analysis. Clin Nutr.Google Scholar
  98. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42:181–185PubMedPubMedCentralCrossRefGoogle Scholar
  99. Mosammaparast N, Shi Y (2010) Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79:155–179PubMedCrossRefGoogle Scholar
  100. Nair SS, Kumar R (2012) Chromatin remodeling in cancer: a gateway to regulate gene transcription. Mol Oncol 6:611–619PubMedPubMedCentralCrossRefGoogle Scholar
  101. Nguyen AT, Taranova O, He J, Zhang Y (2011) DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis. Blood 117:6912–6922PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ning B, Li W, Zhao W, Wang R (2016) Targeting epigenetic regulations in cancer. Acta Biochim Biophys Sin (Shanghai) 48:97–109Google Scholar
  103. Noonan EJ, Place RF, Pookot D, Basak S, Whitson JM, Hirata H, Giardina C, Dahiya R (2009) miR-449a targets HDAC-1 and induces growth arrest in prostate cancer. Oncogene 28:1714–1724PubMedCrossRefGoogle Scholar
  104. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257PubMedCrossRefGoogle Scholar
  105. Oki Y, Kantarjian HM, Gharibyan V, Jones D, O’brien S, Verstovsek S, Cortes J, Morris GM, Garcia-Manero G, Issa JP (2007) Phase II study of low-dose decitabine in combination with imatinib mesylate in patients with accelerated or myeloid blastic phase of chronic myelogenous leukemia. Cancer 109:899–906PubMedCrossRefGoogle Scholar
  106. Pasquinelli AE, Hunter S, Bracht J (2005) MicroRNAs: a developing story. Curr Opin Genet Dev 15:200–205PubMedCrossRefGoogle Scholar
  107. Rauhala HE, Jalava SE, Isotalo J, Bracken H, Lehmusvaara S, Tammela TL, Oja H, Visakorpi T (2010) miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer 127:1363–1372PubMedCrossRefGoogle Scholar
  108. Reichard JF, Puga A (2010) Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics 2:87–104PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rideout WM 3rd, Coetzee GA, Olumi AF, Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290PubMedCrossRefGoogle Scholar
  110. Rodriguez-Paredes M, Martinez De Paz A, Simo-Riudalbas L, Sayols S, Moutinho C, Moran S, Villanueva A, Vazquez-Cedeira M, Lazo PA, Carneiro F, Moura CS, Vieira J, Teixeira MR, Esteller M (2014) Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis. Oncogene 33:2807–2813PubMedCrossRefGoogle Scholar
  111. Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8:983–994PubMedPubMedCentralCrossRefGoogle Scholar
  112. Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C, Plo I, Bordessoule D, Chomienne C, Delannoy A, Devidas A, Gardembas-Pain M, Isnard F, Plumelle Y, Bernard O, Vainchenker W, Najman A, Bellanne-Chantelot C (2009) Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood 114:1628–1632PubMedCrossRefGoogle Scholar
  113. Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5:2220–2222PubMedCrossRefGoogle Scholar
  114. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G (2009) Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 379:726–731PubMedCrossRefGoogle Scholar
  115. Sakabe K, Wang Z, Hart GW (2010) Beta-N-acetylglucosamine (O-GlcNAc) is part of the histone code. Proc Natl Acad Sci U S A 107:19915–19920PubMedPubMedCentralCrossRefGoogle Scholar
  116. Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG, Keating MJ (2012) Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood 119:1162–1172PubMedPubMedCentralCrossRefGoogle Scholar
  117. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103:1412–1417PubMedPubMedCentralCrossRefGoogle Scholar
  118. Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, Casero RA Jr, Marton L, Woster P, Minden MD, Dugas M, Wang JC, Dick JE, Muller-Tidow C, Petrie K, Zelent A (2012) Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 18:605–611PubMedPubMedCentralCrossRefGoogle Scholar
  119. Schnekenburger M, Diederich M (2012) Epigenetics Offer New Horizons for Colorectal Cancer Prevention. Curr Colorectal Cancer Rep 8:66–81PubMedPubMedCentralCrossRefGoogle Scholar
  120. Seto E, Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6:a018713PubMedPubMedCentralCrossRefGoogle Scholar
  121. Shabbir M, Stuart R (2010) Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside. Expert Opin Investig Drugs 19:427–436PubMedCrossRefGoogle Scholar
  122. Shen L, Kantarjian H, Guo Y, Lin E, Shan J, Huang X, Berry D, Ahmed S, Zhu W, Pierce S, Kondo Y, Oki Y, Jelinek J, Saba H, Estey E, Issa JP (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 28:605–613PubMedCrossRefGoogle Scholar
  123. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953PubMedCrossRefGoogle Scholar
  124. Sproul D, Meehan RR (2013) Genomic insights into cancer-associated aberrant CpG island hypermethylation. Brief Funct Genomics 12:174–190PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935PubMedPubMedCentralCrossRefGoogle Scholar
  126. Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET, Yu Q (2007) Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21:1050–1063PubMedPubMedCentralCrossRefGoogle Scholar
  127. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040PubMedPubMedCentralCrossRefGoogle Scholar
  128. Toyokawa G, Cho HS, Masuda K, Yamane Y, Yoshimatsu M, Hayami S, Takawa M, Iwai Y, Daigo Y, Tsuchiya E, Tsunoda T, Field HI, Kelly JD, Neal DE, Maehara Y, Ponder BA, Nakamura Y, Hamamoto R (2011) Histone lysine methyltransferase Wolf-Hirschhorn syndrome candidate 1 is involved in human carcinogenesis through regulation of the Wnt pathway. Neoplasia 13:887–898PubMedPubMedCentralCrossRefGoogle Scholar
  129. Uribe-Lewis S, Woodfine K, Stojic L, Murrell A (2011) Molecular mechanisms of genomic imprinting and clinical implications for cancer. Expert Rev Mol Med 13:e2PubMedCrossRefGoogle Scholar
  130. Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, Brenner JC, Yu J, Kim JH, Han B, Tan P, Kumar-Sinha C, Lonigro RJ, Palanisamy N, Maher CA, Chinnaiyan AM (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699PubMedPubMedCentralCrossRefGoogle Scholar
  131. Vedadi M, Barsyte-Lovejoy D, Liu F, Rival-Gervier S, Allali-Hassani A, Labrie V, Wigle TJ, Dimaggio PA, Wasney GA, Siarheyeva A, Dong A, Tempel W, Wang SC, Chen X, Chau I, Mangano TJ, Huang XP, Simpson CD, Pattenden SG, Norris JL, Kireev DB, Tripathy A, Edwards A, Roth BL, Janzen WP, Garcia BA, Petronis A, Ellis J, Brown PJ, Frye SV, Arrowsmith CH, Jin J (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nat Chem Biol 7:566–574PubMedPubMedCentralCrossRefGoogle Scholar
  132. Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, Thomas DA, Estrov Z, Fridman JS, Bradley EC, Erickson-Viitanen S, Vaddi K, Levy R, Tefferi A (2010) Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N Engl J Med 363:1117–1127PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, Mcdonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283PubMedCrossRefGoogle Scholar
  134. Wang J, Iwasaki H, Krivtsov A, Febbo PG, Thorner AR, Ernst P, Anastasiadou E, Kutok JL, Kogan SC, Zinkel SS, Fisher JK, Hess JL, Golub TR, Armstrong SA, Akashi K, Korsmeyer SJ (2005) Conditional MLL-CBP targets GMP and models therapy-related myeloproliferative disease. EMBO J 24:368–381PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wang Y, Fiskus W, Chong DG, Buckley KM, Natarajan K, Rao R, Joshi A, Balusu R, Koul S, Chen J, Savoie A, Ustun C, Jillella AP, Atadja P, Levine RL, Bhalla KN (2009) Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 114:5024–5033PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF, Hart GW (2010) Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal 3:ra2PubMedPubMedCentralGoogle Scholar
  137. Wang J, Lu F, Ren Q, Sun H, Xu Z, Lan R, Liu Y, Ward D, Quan J, Ye T, Zhang H (2011) Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 71:7238–7249PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wang Y, Toh HC, Chow P, Chung AY, Meyers DJ, Cole PA, Ooi LL, Lee CG (2012) MicroRNA-224 is up-regulated in hepatocellular carcinoma through epigenetic mechanisms. FASEB J 26:3032–3041PubMedPubMedCentralCrossRefGoogle Scholar
  139. Wang LH, Huang J, Wu CR, Huang LY, Cui J, Xing ZZ, Zhao CY (2018) Downregulation of miR29b targets DNMT3b to suppress cellular apoptosis and enhance proliferation in pancreatic cancer. Mol Med Rep 17:2113–2120PubMedGoogle Scholar
  140. Weintraub H, Groudine M (1976) Chromosomal subunits in active genes have an altered conformation. Science 193:848–856PubMedCrossRefGoogle Scholar
  141. Winquist E, Knox J, Ayoub JP, Wood L, Wainman N, Reid GK, Pearce L, Shah A, Eisenhauer E (2006) Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 24:159–167PubMedCrossRefGoogle Scholar
  142. Winter GE, Buckley DL, Paulk J, Roberts JM, Souza A, Dhe-Paganon S, Bradner JE (2015) Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348:1376–1381PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wotschofsky Z, Busch J, Jung M, Kempkensteffen C, Weikert S, Schaser KD, Melcher I, Kilic E, Miller K, Kristiansen G, Erbersdobler A, Jung K (2013) Diagnostic and prognostic potential of differentially expressed miRNAs between metastatic and non-metastatic renal cell carcinoma at the time of nephrectomy. Clin Chim Acta 416:5–10PubMedCrossRefGoogle Scholar
  144. Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25:2436–2452PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wu H, D’alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y (2011) Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25:679–684PubMedPubMedCentralCrossRefGoogle Scholar
  146. Wu T, Qu L, He G, Tian L, Li L, Zhou H, Jin Q, Ren J, Wang Y, Wang J, Kan X, Liu M, Shen J, Guo M, Sun Y (2016) Regulation of laryngeal squamous cell cancer progression by the lncRNA H19/miR-148a-3p/DNMT1 axis. Oncotarget 7:11553–11566PubMedPubMedCentralGoogle Scholar
  147. Xu X, Chen Z, Zhao X, Wang J, Ding D, Wang Z, Tan F, Tan X, Zhou F, Sun J, Sun N, Gao Y, Shao K, Li N, Qiu B, He J (2012) MicroRNA-25 promotes cell migration and invasion in esophageal squamous cell carcinoma. Biochem Biophys Res Commun 421:640–645PubMedCrossRefGoogle Scholar
  148. Yang Z, Yik JH, Chen R, He N, Jang MK, Ozato K, Zhou Q (2005) Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell 19:535–545PubMedCrossRefGoogle Scholar
  149. Yang X, Feng M, Jiang X, Wu Z, Li Z, Aau M, Yu Q (2009) miR-449a and miR-449b are direct transcriptional targets of E2F1 and negatively regulate pRb-E2F1 activity through a feedback loop by targeting CDK6 and CDC25A. Genes Dev 23:2388–2393PubMedPubMedCentralCrossRefGoogle Scholar
  150. Yang S, Li Y, Gao J, Zhang T, Li S, Luo A, Chen H, Ding F, Wang X, Liu Z (2013) MicroRNA-34 suppresses breast cancer invasion and metastasis by directly targeting Fra-1. Oncogene 32:4294–4303PubMedCrossRefGoogle Scholar
  151. Yao YL, Ma J, Wang P, Xue YX, Li Z, Zhao LN, Li ZQ, Feng TD, Liu YH (2015) miR-101 acts as a tumor suppressor by targeting Kruppel-like factor 6 in glioblastoma stem cells. CNS Neurosci Ther 21:40–51PubMedCrossRefGoogle Scholar
  152. Yuan Y, Wang Q, Paulk J, Kubicek S, Kemp MM, Adams DJ, Shamji AF, Wagner BK, Schreiber SL (2012) A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma. ACS Chem Biol 7:1152–1157PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zaman MS, Chen Y, Deng G, Shahryari V, Suh SO, Saini S, Majid S, Liu J, Khatri G, Tanaka Y, Dahiya R (2010) The functional significance of microRNA-145 in prostate cancer. Br J Cancer 103:256–264PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhang P, Huang A, Ferruzzi J, Mecham RP, Starcher BC, Tellides G, Humphrey JD, Giordano FJ, Niklason LE, Sessa WC (2012) Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels--brief report. Arterioscler Thromb Vasc Biol 32:756–759PubMedCrossRefPubMedCentralGoogle Scholar
  155. Zhao Y, Garcia BA (2015) Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 7:a025064PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial CentreHomi Bhabha National InstituteNavi MumbaiIndia

Personalised recommendations