Advances in Mass Spectrometry-Based Proteomics and Its Application in Cancer Research

  • Markus HardtEmail author


With the advent of high-resolution/high mass accuracy instrumentation, sophisticated informatic approaches, and advances in liquid chromatography, mass spectrometry-based proteomics has emerged as an indispensable and widely used tool for the identification, characterization, and quantification of proteins on a large scale. Deep proteome analyses can now sequence over 14,000 protein isoforms for a single human cell line rivaling the depth of next-generation RNA sequencing technology. Without additional enrichment steps, highly sensitive MS-based proteomic studies yield comprehensive identification of major post-translational modifications (PTMs). Isotopic labeling techniques enable the comparison of multiple samples in a single mass spectrometry experiment, while data-independent acquisition strategies provide comprehensive protein coverage and quantification against complex backgrounds.


Mass spectrometry Quantitative proteomics Post-translational modifications Cancer pathways Isotopic labeling 



This work was supported by a New Investigator-Idea Development Award (W81XWH-13-1-0250) by the Congressionally Directed Medical Research Program in Prostate Cancer Research.


  1. Addona TA et al (2009) Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 27(7):633–641PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620):347–355PubMedCrossRefPubMedCentralGoogle Scholar
  3. Akimov V et al (2018) UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol 25(7):631–640PubMedCrossRefPubMedCentralGoogle Scholar
  4. Allmer J (2011) Algorithms for the de novo sequencing of peptides from tandem mass spectra. Expert Rev Proteomics 8(5):645–657PubMedCrossRefPubMedCentralGoogle Scholar
  5. Altelaar AM, Heck AJ (2012) Trends in ultrasensitive proteomics. Curr Opin Chem Biol 16(1–2):206–213PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bandura DR et al (2009) Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal Chem 81(16):6813–6822PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bantscheff M et al (2012) Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 404(4):939–965PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bateman NW et al (2013) Maximizing peptide identification events in proteomic workflows utilizing data-dependent acquisition. Mol Cell Proteomics 13(1):329–338PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bekker-Jensen DB et al (2017) An optimized shotgun strategy for the rapid generation of comprehensive human proteomes. Cell Syst 4(6):587–599.e4PubMedPubMedCentralCrossRefGoogle Scholar
  10. Belczacka I et al (2018) Proteomics biomarkers for solid tumors: current status and future prospects. Mass Spectrom Rev 136:E359Google Scholar
  11. Boersema PJ et al (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8(22):4624–4632PubMedCrossRefPubMedCentralGoogle Scholar
  12. Boersema PJ et al (2010) In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics 9(1):84–99PubMedCrossRefPubMedCentralGoogle Scholar
  13. Bourmaud A, Gallien S, Domon B (2016) Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: principle and applications. Proteomics 16(15–16):2146–2159PubMedCrossRefPubMedCentralGoogle Scholar
  14. Breitkopf SB, Asara JM (2012) Determining in vivo phosphorylation sites using mass spectrometry. In: Ausubel FM et al (eds) Current protocols in molecular biology, Chapter 18(1), pp Unit18.19.1–27Google Scholar
  15. Cantor DI, Nice EC, Baker MS (2015) Recent findings from the human proteome project: opening the mass spectrometry toolbox to advance cancer diagnosis, surveillance and treatment. Expert Rev Proteomics 12(3):279–293PubMedCrossRefPubMedCentralGoogle Scholar
  16. Carr SA, Annan RS, Huddleston MJ (2005) Mapping posttranslational modifications of proteins by MS-based selective detection: application to phosphoproteomics. Methods Enzymol 405:82–115PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chi A et al (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci U S A 104(7):2193–2198PubMedPubMedCentralCrossRefGoogle Scholar
  18. Choe L et al (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7(20):3651–3660PubMedPubMedCentralCrossRefGoogle Scholar
  19. Collins MO et al (2005) Proteomic analysis of in vivo phosphorylated synaptic proteins. J Biol Chem 280(7):5972–5982PubMedCrossRefPubMedCentralGoogle Scholar
  20. Collins BC et al (2017) Multi-laboratory assessment of reproducibility, qualitative and quantitative performance of SWATH-mass spectrometry. Nat Commun 8(1):291PubMedPubMedCentralCrossRefGoogle Scholar
  21. Conrads KA et al (2005) A combined proteome and microarray investigation of inorganic phosphate-induced pre-osteoblast cells. Mol Cell Proteomics 4(9):1284–1296PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cornett DS et al (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 4(10):828–833PubMedCrossRefPubMedCentralGoogle Scholar
  23. Cox J et al (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10(4):1794–1805PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cox J et al (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526PubMedPubMedCentralCrossRefGoogle Scholar
  25. Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20(9):1466–1467PubMedCrossRefPubMedCentralGoogle Scholar
  26. Craig R et al (2006) Using annotated peptide mass spectrum libraries for protein identification. J Proteome Res 5(8):1843–1849PubMedCrossRefPubMedCentralGoogle Scholar
  27. Creasy DM, Cottrell JS (2004) Unimod: protein modifications for mass spectrometry. Proteomics 4(6):1534–1536PubMedCrossRefPubMedCentralGoogle Scholar
  28. de Godoy LMF et al (2008) Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature 455(7217):1251–1254PubMedCrossRefPubMedCentralGoogle Scholar
  29. Dekker LJM et al (2018) Determination of site-specific phosphorylation ratios in proteins with targeted mass spectrometry. J Proteome Res 17(4):1654–1663PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dephoure N, Gygi SP (2012) Hyperplexing: a method for higher-order multiplexed quantitative proteomics provides a map of the dynamic response to rapamycin in yeast. Sci Signal 5(217):rs2–rs2PubMedPubMedCentralCrossRefGoogle Scholar
  31. Desiere F et al (2004) Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol 6(1):R9PubMedPubMedCentralCrossRefGoogle Scholar
  32. Desouza LV et al (2008) Multiple reaction monitoring of mTRAQ-labeled peptides enables absolute quantification of endogenous levels of a potential cancer marker in cancerous and normal endometrial tissues. J Proteome Res 7(8):3525–3534PubMedCrossRefPubMedCentralGoogle Scholar
  33. Deutsch EW et al (2018) Expanding the use of spectral libraries in proteomics. J Proteome Res 17(12):4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ding F et al (2014) The role of the ubiquitin-proteasome pathway in cancer development and treatment. Front Biosci 19:886–895CrossRefGoogle Scholar
  35. Dinkel H et al (2011) Phospho.ELM: a database of phosphorylation sites–update 2011. Nucleic Acids Res 39(Database issue):D261–D267PubMedCrossRefPubMedCentralGoogle Scholar
  36. Doll S, Burlingame AL (2015) Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS Chem Biol 10(1):63–71PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dowling RJO et al (2010) Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim Biophys Acta 1804(3):433–439PubMedCrossRefPubMedCentralGoogle Scholar
  38. Drabovich AP et al (2012) Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay. Mol Cell Proteomics 11(8):422–434PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dreier RF et al (2018) Global ion suppression limits the potential of mass spectrometry based phosphoproteomics. J Proteome Res 18(1):493–507. Scholar
  40. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989PubMedCrossRefPubMedCentralGoogle Scholar
  41. Eng JK et al (2011) A face in the crowd: recognizing peptides through database search. Mol Cell Proteomics 10(11):R111.009522PubMedPubMedCentralCrossRefGoogle Scholar
  42. Erickson BK et al (2017) A strategy to combine sample multiplexing with targeted proteomics assays for high-throughput protein signature characterization. Mol Cell 65(2):361–370PubMedPubMedCentralCrossRefGoogle Scholar
  43. Escher C et al (2012) Using iRT, a normalized retention time for more targeted measurement of peptides. Proteomics 12(8):1111–1121PubMedPubMedCentralCrossRefGoogle Scholar
  44. Everley P et al (2004) Quantitative cancer proteomics: stable isotope labeling with amino acids in cell culture (SILAC) as a tool for prostate cancer research. Mol Cell Proteomics 3(7):729–735PubMedCrossRefPubMedCentralGoogle Scholar
  45. Everley PA et al (2006) Enhanced analysis of metastatic prostate cancer using stable isotopes and high mass accuracy instrumentation. J Proteome Res 5(5):1224–1231PubMedCrossRefPubMedCentralGoogle Scholar
  46. Faria SS et al (2017) A timely shift from shotgun to targeted proteomics and how it can be groundbreaking for cancer research. Front Oncol 7(10):13PubMedPubMedCentralGoogle Scholar
  47. Farrah T et al (2012) PASSEL: the PeptideAtlas SRM experiment library. Proteomics 12(8):1170–1175PubMedCrossRefPubMedCentralGoogle Scholar
  48. Frank A, Pevzner P (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77(4):964–973PubMedCrossRefPubMedCentralGoogle Scholar
  49. Franks A, Airoldi E, Slavov N (2017) Post-transcriptional regulation across human tissues (Vogel C (ed)). PLoS Comput Biol 13(5):e1005535Google Scholar
  50. Frewen BE et al (2006) Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal Chem 78(16):5678–5684PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fu J et al (2009) System-wide molecular evidence for phenotypic buffering in Arabidopsis. Nat Genet 41(2):166–167PubMedCrossRefPubMedCentralGoogle Scholar
  52. Garavelli JS (2004) The RESID database of protein modifications as a resource and annotation tool. Proteomics 4(6):1527–1533PubMedCrossRefPubMedCentralGoogle Scholar
  53. Geer LY et al (2004) Open mass spectrometry search algorithm. J Proteome Res 3(5):958–964PubMedCrossRefPubMedCentralGoogle Scholar
  54. Geiger T et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7(5):383–385PubMedCrossRefPubMedCentralGoogle Scholar
  55. Geiger T et al (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11(3):M111.014050–M111.014050PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gerber SA et al (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940–6945PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gevaert K et al (2008) Stable isotopic labeling in proteomics (Dunn MJ (ed)). Proteomics 8(23–24):4873–4885Google Scholar
  58. Gholami AM et al (2013) Global proteome analysis of the NCI-60 cell line panel. Cell Rep 4(3):609–620PubMedCrossRefPubMedCentralGoogle Scholar
  59. Giesen C et al (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422PubMedCrossRefPubMedCentralGoogle Scholar
  60. Gillet LC et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717–O111.016717PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gruhler A et al (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4(3):310–327PubMedCrossRefPubMedCentralGoogle Scholar
  62. Gygi SP, Rist B et al (1999a) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999PubMedCrossRefPubMedCentralGoogle Scholar
  63. Gygi SP, Rochon Y et al (1999b) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19(3):1720–1730PubMedPubMedCentralCrossRefGoogle Scholar
  64. Halligan BD et al (2004) ProMoST (Protein Modification Screening Tool): a web-based tool for mapping protein modifications on two-dimensional gels. Nucleic Acids Res 32(Web Server issue):W638–W644PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hamelin C et al (2011) Identification and verification of heat shock protein 60 as a potential serum marker for colorectal cancer. FEBS J 278(24):4845–4859PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hebert AS, Merrill AE et al (2013a) Amine-reactive neutron-encoded labels for highly plexed proteomic quantitation. Mol Cell Proteomics 12(11):3360–3369PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hebert AS, Richards AL et al (2013b) The one hour yeast proteome. Mol Cell Proteomics 13(1):339–347PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hegeman AD et al (2004) An isotope labeling strategy for quantifying the degree of phosphorylation at multiple sites in proteins. J Am Soc Mass Spectrom 15(5):647–653PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hernández H, Robinson CV (2007) Determining the stoichiometry and interactions of macromolecular assemblies from mass spectrometry. Nat Protoc 2(3):715–726PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hornbeck PV et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261–D270PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hsu PP et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322PubMedPubMedCentralCrossRefGoogle Scholar
  72. Huang Z et al (2017) Proteomic profiling of human plasma for cancer biomarker discovery (Pandey A (ed)). Proteomics 17(6):1600240Google Scholar
  73. Huang H et al (2018) iPTMnet: an integrated resource for protein post-translational modification network discovery. Nucleic Acids Res 46(D1):D542–D550PubMedCrossRefPubMedCentralGoogle Scholar
  74. Humphrey SJ, Azimifar SB, Mann M (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol 33(9):990–995PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hüttenhain R et al (2012) Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med 4(142):142ra94–142ra94PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hüttenhain R et al (2013) Quantitative measurements of N-linked glycoproteins in human plasma by SWATH-MS (Figeys D (ed)). Proteomics 13(8):1247–1256Google Scholar
  77. Huttlin EL et al (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ishihama Y et al (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4(9):1265–1272PubMedCrossRefPubMedCentralGoogle Scholar
  79. Jin LL et al (2010) Measurement of protein phosphorylation stoichiometry by selected reaction monitoring mass spectrometry. J Proteome Res 9(5):2752–2761PubMedCrossRefPubMedCentralGoogle Scholar
  80. Karp NA et al (2010) Addressing accuracy and precision issues in iTRAQ quantitation. Mol Cell Proteomics 9(9):1885–1897PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kettenbach AN, Gerber SA (2011) Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal Chem 83(20):7635–7644PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kim M-S et al (2014) A draft map of the human proteome. Nature 509(7502):575–581PubMedPubMedCentralCrossRefGoogle Scholar
  83. Klein T et al (2017) Proteolytic cleavage-mechanisms, function, and “omic” approaches for a near-ubiquitous posttranslational modification. Chem Rev 118(3):1137–1168. Scholar
  84. Krug K et al (2018) A curated resource for phosphosite-specific signature analysis. Mol Cell Proteomics 18(3):576–593. Scholar
  85. Kruger M et al (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134(2):353–364PubMedCrossRefPubMedCentralGoogle Scholar
  86. Kusebauch U et al (2014) Using PeptideAtlas, SRMAtlas, and PASSEL: comprehensive resources for discovery and targeted proteomics (Baxevanis AD et al (ed)). Curr Protoc Bioinformatics 46(1):13.25.1–28Google Scholar
  87. Kusebauch U et al (2016) Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell 166(3):766–778PubMedPubMedCentralCrossRefGoogle Scholar
  88. Laine RA (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4(6):759–767PubMedCrossRefPubMedCentralGoogle Scholar
  89. Lam H et al (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7(5):655–667PubMedCrossRefPubMedCentralGoogle Scholar
  90. Le Blanc JCY et al (2003) Unique scanning capabilities of a new hybrid linear ion trap mass spectrometer (Q TRAP) used for high sensitivity proteomics applications. Proteomics 3(6):859–869PubMedCrossRefPubMedCentralGoogle Scholar
  91. Leney AC, Heck AJR (2017 Jan) Native mass spectrometry: what is in the name? J Am Soc Mass Spectrom 28(1):5–13. PMCID: PMC5174146PubMedPubMedCentralCrossRefGoogle Scholar
  92. Li J, Duncan DT, Zhang B (2010) CanProVar: a human cancer proteome variation database. Hum Mutat 31(3):219–228PubMedPubMedCentralCrossRefGoogle Scholar
  93. Li J et al (2011) A bioinformatics workflow for variant peptide detection in shotgun proteomics. Mol Cell Prot 10(5):M110.006536CrossRefGoogle Scholar
  94. Löster K, Kannicht C (2008) 2-dimensional electrophoresis: detection of glycosylation and influence on spot pattern. Methods Mol Biol 446(Chapter 14):199–214PubMedCrossRefPubMedCentralGoogle Scholar
  95. Ludwig C et al (2011) Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry. Mol Cell Proteomics 11(3):M111.013987–M111.013987PubMedPubMedCentralCrossRefGoogle Scholar
  96. Ludwig C et al (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14(8):e8126PubMedPubMedCentralCrossRefGoogle Scholar
  97. Lundberg E et al (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol Syst Biol 6:450PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ma B (2015) Novor: real-time peptide de novo sequencing software. J Am Soc Mass Spectrom 26(11):1885–1894PubMedPubMedCentralCrossRefGoogle Scholar
  99. Ma B et al (2003) PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17(20):2337–2342PubMedCrossRefPubMedCentralGoogle Scholar
  100. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49(1):199–221PubMedCrossRefPubMedCentralGoogle Scholar
  101. Maclean B et al (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26(7):966–968PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mallick P et al (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25(1):125–131PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mani A, Gelmann EP (2005) The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol Off J Am Soc Clin Oncol 23(21):4776–4789CrossRefGoogle Scholar
  104. Mann M (2006) Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7(12):952–958PubMedCrossRefGoogle Scholar
  105. Manning G et al (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934PubMedCrossRefPubMedCentralGoogle Scholar
  106. Matsumoto M, Nakayama KI (2018) The promise of targeted proteomics for quantitative network biology. Curr Opin Biotechnol 54:88–97PubMedCrossRefPubMedCentralGoogle Scholar
  107. Matsumoto M et al (2017) A large-scale targeted proteomics assay resource based on an in vitro human proteome. Nat Methods 14(3):251–258PubMedCrossRefPubMedCentralGoogle Scholar
  108. Mcalister GC et al (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86(14):7150–7158PubMedPubMedCentralCrossRefGoogle Scholar
  109. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26(4):606–643PubMedPubMedCentralCrossRefGoogle Scholar
  110. Meier F et al (2015) Parallel accumulation-serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J Proteome Res 14(12):5378–5387PubMedCrossRefPubMedCentralGoogle Scholar
  111. Mertins P et al (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534(7605):55–62PubMedPubMedCentralCrossRefGoogle Scholar
  112. Mertins P et al (2018) Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc 13(7):1632–1661PubMedPubMedCentralCrossRefGoogle Scholar
  113. Mikesh LM et al (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764(12):1811–1822PubMedPubMedCentralCrossRefGoogle Scholar
  114. Minogue CE et al (2015) Multiplexed quantification for data-independent acquisition. Anal Chem 87(5):2570–2575PubMedPubMedCentralCrossRefGoogle Scholar
  115. Monteoliva L, Albar JP (2004) Differential proteomics: an overview of gel and non-gel based approaches. Brief Funct Genomic Proteomic 3(3):220–239PubMedCrossRefPubMedCentralGoogle Scholar
  116. Mueller LN et al (2008) An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7(1):51–61PubMedCrossRefPubMedCentralGoogle Scholar
  117. Murphy JP, Pinto DM (2010) Targeted proteomic analysis of glycolysis in cancer cells. J Proteome Res 10(2):604–613PubMedCrossRefPubMedCentralGoogle Scholar
  118. Nagaraj N et al (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7(1):548–548PubMedPubMedCentralCrossRefGoogle Scholar
  119. Nahnsen S et al (2013) Tools for label-free peptide quantification. Mol Cell Proteomics 12(3):549–556PubMedCrossRefPubMedCentralGoogle Scholar
  120. Navarro P et al (2016) A multicenter study benchmarks software tools for label-free proteome quantification. Nat Biotechnol 34:1130–1136PubMedPubMedCentralCrossRefGoogle Scholar
  121. Nesvizhskii AI (2010) A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteome 73(11):2092–2123CrossRefGoogle Scholar
  122. Olsen JV et al (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127(3):635–648PubMedCrossRefPubMedCentralGoogle Scholar
  123. Olsen JV et al (2010) Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal 3(104):ra3–ra3PubMedCrossRefPubMedCentralGoogle Scholar
  124. Ong S-E et al (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedCrossRefPubMedCentralGoogle Scholar
  125. Overmyer KA et al (2018) Multiplexed proteome analysis with neutron-encoded stable isotope labeling in cells and mice. Nat Protoc 13(1):293–306PubMedPubMedCentralCrossRefGoogle Scholar
  126. Ow SY et al (2009) iTRAQ underestimation in simple and complex mixtures: “the good, the bad and the ugly”. J Proteome Res 8(11):5347–5355PubMedCrossRefPubMedCentralGoogle Scholar
  127. Pang J et al (2010) Profiling protein markers associated with lymph node metastasis in prostate cancer by DIGE-based proteomics analysis. J Proteome Res 9(1):216–226PubMedCrossRefPubMedCentralGoogle Scholar
  128. Perkins DN et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18):3551–3567PubMedCrossRefPubMedCentralGoogle Scholar
  129. Peterson AC, Russell JD, Bailey DJ, Westphall MS, Coon JJ (2012) Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol Cell Proteomics 11(11):1475–1488CrossRefGoogle Scholar
  130. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566PubMedCrossRefPubMedCentralGoogle Scholar
  131. Picotti P et al (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7(1):43–46PubMedCrossRefPubMedCentralGoogle Scholar
  132. Picotti P, Bodenmiller B, Aebersold R (2013) Proteomics meets the scientific method. Nat Methods 10(1):24–27PubMedCrossRefPubMedCentralGoogle Scholar
  133. Potts GK et al (2016) Neucode labels for multiplexed, absolute protein quantification. Anal Chem 88(6):3295–3303PubMedPubMedCentralCrossRefGoogle Scholar
  134. Rhoads TW et al (2014) Neutron-encoded mass signatures for quantitative top-down proteomics. Anal Chem 86(5):2314–2319PubMedPubMedCentralCrossRefGoogle Scholar
  135. Rose CM et al (2018) TomahaqCompanion: a tool for the creation and analysis of isobaric label based multiplexed targeted assays. J Proteome Res 18(2):594–605PubMedCrossRefPubMedCentralGoogle Scholar
  136. Rosenberger G et al (2014) A repository of assays to quantify 10,000 human proteins by SWATH-MS. Sci Data 1:140031PubMedPubMedCentralCrossRefGoogle Scholar
  137. Ross PL et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169PubMedCrossRefPubMedCentralGoogle Scholar
  138. Röst HL et al (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol 32(3):219–223PubMedCrossRefPubMedCentralGoogle Scholar
  139. Rush J et al (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94–101PubMedCrossRefPubMedCentralGoogle Scholar
  140. Schober Y et al (2012) Single cell matrix-assisted laser desorption/ionization mass spectrometry imaging. Anal Chem 84(15):6293–6297PubMedCrossRefPubMedCentralGoogle Scholar
  141. Schubert OT et al (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10(3):426–441PubMedCrossRefPubMedCentralGoogle Scholar
  142. Schwamborn K, Caprioli RM (2010) Molecular imaging by mass spectrometry--looking beyond classical histology. Nat Rev Cancer 10(9):639–646PubMedCrossRefPubMedCentralGoogle Scholar
  143. Schwanhäusser B et al (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342PubMedCrossRefPubMedCentralGoogle Scholar
  144. Searle BC (2010) Scaffold: a bioinformatic tool for validating MS/MS-based proteomic studies (Martens L, Hermjakob H (eds)). Proteomics 10(6):1265–1269Google Scholar
  145. Sharma K et al (2014) Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep 8(5):1583–1594PubMedCrossRefPubMedCentralGoogle Scholar
  146. Shi H et al (2011) Proteomic analysis of advanced colorectal cancer by laser capture microdissection and two-dimensional difference gel electrophoresis. J Proteome 75(2):339–351CrossRefGoogle Scholar
  147. Shortreed MR et al (2016) Elucidating proteoform families from proteoform intact-mass and lysine-count measurements. J Proteome Res 15(4):1213–1221PubMedPubMedCentralCrossRefGoogle Scholar
  148. Shteynberg D et al (2011) iProphet: multi-level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol Cell Proteomics 10(12):M111.007690–M111.007690PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shteynberg D et al (2013) Combining results of multiple search engines in proteomics. Mol Cell Proteomics 12(9):2383–2393PubMedPubMedCentralCrossRefGoogle Scholar
  150. Skelly DA et al (2013) Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 23(9):1496–1504PubMedPubMedCentralCrossRefGoogle Scholar
  151. Smith LM, Kelleher NL, Consortium for Top Down Proteomics (2013) Proteoform: a single term describing protein complexity. Nat Methods 10(3):186–187PubMedPubMedCentralCrossRefGoogle Scholar
  152. Soste M et al (2014) A sentinel protein assay for simultaneously quantifying cellular processes. Nat Methods 11(10):1045–1048PubMedCrossRefPubMedCentralGoogle Scholar
  153. Specht H, Slavov N (2018) Transformative opportunities for single-cell proteomics. J Proteome Res 17(8):2565–2571PubMedPubMedCentralCrossRefGoogle Scholar
  154. Steen H et al (2003) Phosphotyrosine mapping in Bcr/Abl oncoprotein using phosphotyrosine-specific immonium ion scanning. Mol Cell Proteomics 2(3):138–145PubMedCrossRefPubMedCentralGoogle Scholar
  155. Steen H et al (2005) Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc Natl Acad Sci U S A 102(11):3948–3953PubMedPubMedCentralCrossRefGoogle Scholar
  156. Stensballe A et al (2000) Electron capture dissociation of singly and multiply phosphorylated peptides. Rapid Commun Mass Spectrom 14(19):1793–1800PubMedCrossRefPubMedCentralGoogle Scholar
  157. Stulík J et al (1999) Protein abundance alterations in matched sets of macroscopically normal colon mucosa and colorectal carcinoma. Electrophoresis 20(18):3638–3646PubMedCrossRefPubMedCentralGoogle Scholar
  158. Sury MD, Chen J-X, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9(10):2173–2183PubMedPubMedCentralCrossRefGoogle Scholar
  159. Syka JEP et al (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533PubMedPubMedCentralCrossRefGoogle Scholar
  160. Tabb DL, Fernando CG, Chambers MC (2007) MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. J Proteome Res 6(2):654–661PubMedPubMedCentralCrossRefGoogle Scholar
  161. Tan HT, Lee YH, Chung MCM (2012) Cancer proteomics. Mass Spectrom Rev 31(5):583–605PubMedCrossRefPubMedCentralGoogle Scholar
  162. Taylor J, Johnson R (2001) Implementation and uses of automated de novo peptide sequencing by tandem mass spectrometry. Anal Chem 73(11):2594–2604PubMedCrossRefPubMedCentralGoogle Scholar
  163. Thompson A et al (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904PubMedCrossRefPubMedCentralGoogle Scholar
  164. Thul PJ et al (2017) A subcellular map of the human proteome. Science 356(6340):eaal3321PubMedCrossRefPubMedCentralGoogle Scholar
  165. Ting L et al (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8(11):937–940PubMedPubMedCentralCrossRefGoogle Scholar
  166. Tran JC et al (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480(7376):254–258PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tsou C-C et al (2015) DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 12(3):258–64– 7 p following 264PubMedPubMedCentralCrossRefGoogle Scholar
  168. Tsou C-C et al (2016) Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers (Aebersold R et al (eds)). Proteomics 16(15–16):2257–2271PubMedPubMedCentralCrossRefGoogle Scholar
  169. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319PubMedCrossRefPubMedCentralGoogle Scholar
  170. Ubersax JA, Ferrell JE (2007) Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 8(7):530–541PubMedCrossRefPubMedCentralGoogle Scholar
  171. Uhlen M et al (2015) Tissue-based map of the human proteome. Science 347(6220):1260419–1260419CrossRefGoogle Scholar
  172. Uhlén M et al (2017) A pathology atlas of the human cancer transcriptome. Science 357(6352):eaan2507PubMedCrossRefPubMedCentralGoogle Scholar
  173. Umar A et al (2007) NanoLC-FT-ICR MS improves proteome coverage attainable for approximately 3000 laser-microdissected breast carcinoma cells. Proteomics 7(2):323–329PubMedCrossRefPubMedCentralGoogle Scholar
  174. Veenstra TD (2013) Proteomic applications in cancer detection and discovery. Wiley, HobokenGoogle Scholar
  175. Vyatkina K et al (2017) De novo sequencing of peptides from high-resolution bottom-up tandem mass spectra using top-down intended methods (Mathivanan S (ed)). Proteomics 17(23–24):1600321Google Scholar
  176. Wang Y et al (2007) Differential expression of mimecan and thioredoxin domain-containing protein 5 in colorectal adenoma and cancer: a proteomic study. Exp Biol Med (Maywood) 232(9):1152–1159CrossRefGoogle Scholar
  177. Wang M et al (2018) Assembling the community-scale discoverable human proteome. Cell Syst 7(4):412–421.e5PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wenger CD et al (2011) Gas-phase purification enables accurate, multiplexed proteome quantification with isobaric tagging. Nat Methods 8(11):933–935PubMedPubMedCentralCrossRefGoogle Scholar
  179. Whiteaker JR et al (2010) An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics 9(1):184–196PubMedCrossRefPubMedCentralGoogle Scholar
  180. Wichmann C et al (2018) MaxQuant.Live enables global targeting of more than 25,000 peptides. bioRxiv:1–15Google Scholar
  181. Wilhelm M et al (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587PubMedCrossRefPubMedCentralGoogle Scholar
  182. Wiśniewski JR, Ostasiewicz P, Mann M (2011) High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res 10(7):3040–3049PubMedCrossRefPubMedCentralGoogle Scholar
  183. Wu CC et al (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76(17):4951–4959PubMedCrossRefPubMedCentralGoogle Scholar
  184. Wu R et al (2011) Correct interpretation of comprehensive phosphorylation dynamics requires normalization by protein expression changes. Mol Cell Proteomics 10(8):M111.009654PubMedPubMedCentralCrossRefGoogle Scholar
  185. Xing X et al (2006) Identification of differentially expressed proteins in colorectal cancer by proteomics: down-regulation of secretagogin. Proteomics 6(9):2916–2923PubMedCrossRefPubMedCentralGoogle Scholar
  186. Xu G, Paige JS, Jaffrey SR (2010) Global analysis of lysine ubiquitination by ubiquitin remnant immunoaffinity profiling. Nat Biotechnol 28(8):868–873PubMedPubMedCentralCrossRefGoogle Scholar
  187. Yu Y et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326PubMedPubMedCentralCrossRefGoogle Scholar
  188. Zhang X et al (2002) N-Terminal peptide labeling strategy for incorporation of isotopic tags: a method for the determination of site-specific absolute phosphorylation stoichiometry. Rapid Commun Mass Spectrom 16(24):2325–2332PubMedCrossRefPubMedCentralGoogle Scholar
  189. Zhang B et al (2014) Proteogenomic characterization of human colon and rectal cancer. Nature 513(7518):382–387PubMedPubMedCentralCrossRefGoogle Scholar
  190. Zhang H et al (2016) Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell 166(3):755–765PubMedPubMedCentralCrossRefGoogle Scholar
  191. Zhang M et al (2017) CanProVar 2.0: an updated database of human cancer proteome variation. J Proteome Res 16(2):421–432PubMedCrossRefPubMedCentralGoogle Scholar
  192. Zhou M, Morgner N, Barrera NP, Politis A, Isaacson SC, Matak-Vinković D et al (2011 Oct 21) Mass spectrometry of intact V-type ATPases reveals bound lipids and the effects of nucleotide binding. Science 334(6054):380–385. PMCID: PMC3927129PubMedPubMedCentralCrossRefGoogle Scholar
  193. Zolg DP et al (2017) Building proteometools based on a complete synthetic human proteome. Nat Methods 14(3):259–262PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zubarev RA et al (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72(3):563–573PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Center for Salivary DiagnosticsThe Forsyth InstituteCambridgeUSA
  2. 2.Harvard School of Dental MedicineBostonUSA

Personalised recommendations