Protein Palmitoylation in Cancer

  • Sonia LoboEmail author


Protein palmitoylation describes the posttranslational addition of the 16-carbon fatty acid, palmitate, to specific cysteine of proteins via a labile thioester bond. Unlike other forms of lipidation, such as myristoylation and prenylation, palmitoylation is reversible, allowing for dynamic regulation of protein-membrane interactions, protein trafficking between membrane compartments, protein-protein interactions, and protein function. Recent proteomic studies have revealed that the number of palmitoylated proteins in mammals is both abundant and diverse; curation of data from such studies has demonstrated that genes encoding palmitoylated proteins constitute 10% of the genome and that palmitoylation is enriched equally in cancer, at neuronal synapses, and in disorders of the nervous system. This suggests that a disruption in the homeostatic balance of protein palmitoylation can have critical pathophysiological consequences. Palmitoyl acyltransferases (PATs) catalyze the transfer of palmitate to a substrate, while depalmitoylation is mediated by acyl-protein thioesterases (APTs). To date, nearly half of the 23 genes that encode PATs and several APT genes have been linked to tumorigenesis, representing important targets for cancer drug development. While convincing evidence for a role for aberrant palmitoylation in cancer remains to be established, the number of cancer-related signaling proteins and networks in which palmitoylation plays a pivotal role is large and growing. Developing pharmacological modulators of palmitoylation to prevent or reverse cancer progression will require that they be developed within the context of well-characterized PAT-/APT-related signaling systems implicated in cancer.


Palmitoylation Palmitoyl acyltransferases Acyl-protein thioesterases Posttranslational modification Cancer 


  1. Abe A, Yamamoto Y, Iba S, Kanie T, Okamoto A, Tokuda M et al (2016) ETV6-LPXN fusion transcript generated by t(11;12)(q12.1;p13) in a patient with relapsing acute myeloid leukemia with NUP98-HOXA9. Genes Chromosomes Cancer 55(3):242–250PubMedCrossRefGoogle Scholar
  2. Abrami L, Kunz B, Iacovache I, van der Goot FG (2008) Palmitoylation and ubiquitination regulate exit of the Wnt signaling protein LRP6 from the endoplasmic reticulum. Proc Natl Acad Sci USA 105(14):5384–5389PubMedCrossRefGoogle Scholar
  3. Abrami L, Dallavilla T, Sandoz PA, Demir M, Kunz B, Savoglidis G et al (2017) Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade. Elife 6Google Scholar
  4. Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A et al (2005) Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 16(1):231–237PubMedPubMedCentralCrossRefGoogle Scholar
  5. Adibekian A, Martin BR, Chang JW, Hsu KL, Tsuboi K, Bachovchin DA, et al (2010a) Characterization of a Selective, Reversible Inhibitor of Lysophospholipase 2 (LYPLA2). Probe Reports from the NIH Molecular Libraries Program, Bethesda (MD)Google Scholar
  6. Adibekian A, Martin BR, Chang JW, Hsu KL, Tsuboi K, Bachovchin DA, et al (2010b) Characterization of a selective, reversible inhibitor of lysophospholipase 1 (LYPLA1). Probe Reports from the NIH Molecular Libraries Program. Bethesda (MD)Google Scholar
  7. Adibekian A, Martin BR, Chang JW, Hsu KL, Tsuboi K, Bachovchin DA et al (2012) Confirming target engagement for reversible inhibitors in vivo by kinetically tuned activity-based probes. J Am Chem Soc. 134(25):10345–10348PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ahearn IM, Haigis K, Bar-Sagi D, Philips MR (2011) Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 13(1):39–51PubMedCrossRefGoogle Scholar
  9. Akimzhanov AM, Boehning D (2015) Rapid and transient palmitoylation of the tyrosine kinase Lck mediates Fas signaling. Proc Natl Acad Sci USA 112(38):11876–11880PubMedCrossRefGoogle Scholar
  10. Akimzhanov AM, Wang X, Sun J, Boehning D (2010) T-cell receptor complex is essential for Fas signal transduction. Proc Natl Acad Sci USA 107(34):15105–15110PubMedCrossRefGoogle Scholar
  11. Anami K, Oue N, Noguchi T, Sakamoto N, Sentani K, Hayashi T et al (2010) Search for transmembrane protein in gastric cancer by the Escherichia coli ampicillin secretion trap: expression of DSC2 in gastric cancer with intestinal phenotype. J Pathol. 221(3):275–284PubMedCrossRefGoogle Scholar
  12. Anbazhagan R, Fujii H, Gabrielson E (1998) Allelic loss of chromosomal arm 8p in breast cancer progression. Am J Pathol 152(3):815–819PubMedPubMedCentralGoogle Scholar
  13. Asciolla JJ, Miele MM, Hendrickson RC, Resh MD (2017) An in vitro fatty acylation assay reveals a mechanism for Wnt recognition by the acyltransferase Porcupine. J Biol Chem. 292(33):13507–13513PubMedPubMedCentralCrossRefGoogle Scholar
  14. Babina IS, McSherry EA, Donatello S, Hill AD, Hopkins AM (2014) A novel mechanism of regulating breast cancer cell migration via palmitoylation-dependent alterations in the lipid raft affiliation of CD44. Breast Cancer Res. 16(1):R19PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bachovchin DA, Brown SJ, Rosen H, Cravatt BF (2009) Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat Biotechnol. 27(4):387–394PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bakker ER, Das AM, Helvensteijn W, Franken PF, Swagemakers S, van der Valk MA et al (2013) Wnt5a promotes human colon cancer cell migration and invasion but does not augment intestinal tumorigenesis in Apc1638N mice. Carcinogenesis. 34(11):2629–2638PubMedCrossRefGoogle Scholar
  17. Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature. 432(7015):324–331PubMedCrossRefGoogle Scholar
  18. Berg V, Rusch M, Vartak N, Jungst C, Schauss A, Waldmann H et al (2015) miRs-138 and -424 control palmitoylation-dependent CD95-mediated cell death by targeting acyl protein thioesterases 1 and 2 in CLL. Blood 125(19):2948–2957PubMedPubMedCentralCrossRefGoogle Scholar
  19. Berger MF, Hodis E, Heffernan TP, Deribe YL, Lawrence MS, Protopopov A et al (2012) Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 485(7399):502–506PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bergom C, Gao C, Newman PJ (2005) Mechanisms of PECAM-1-mediated cytoprotection and implications for cancer cell survival. Leuk Lymphoma 46(10):1409–1421PubMedCrossRefGoogle Scholar
  21. Bollu LR, Katreddy RR, Blessing AM, Pham N, Zheng B, Wu X et al (2015) Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 6(33):34992–35003PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bova GS, Carter BS, Bussemakers MJ, Emi M, Fujiwara Y, Kyprianou N et al (1993) Homozygous deletion and frequent allelic loss of chromosome 8p22 loci in human prostate cancer. Cancer Res 53(17):3869–3873PubMedGoogle Scholar
  23. Burger M, Zimmermann TJ, Kondoh Y, Stege P, Watanabe N, Osada H et al (2012) Crystal structure of the predicted phospholipase LYPLAL1 reveals unexpected functional plasticity despite close relationship to acyl protein thioesterases. J Lipid Res 53(1):43–50PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cai H, Smith DA, Memarzadeh S, Lowell CA, Cooper JA, Witte ON (2011) Differential transformation capacity of Src family kinases during the initiation of prostate cancer. Proc Natl Acad Sci USA 108(16):6579–6584PubMedCrossRefGoogle Scholar
  25. Chavda B, Ling J, Majernick T, Planey SL (2017) Antiproliferative factor (APF) binds specifically to sites within the cytoskeleton-associated protein 4 (CKAP4) extracellular domain. BMC Biochem 18(1):13PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chen JJ, Boehning D (2017) Protein lipidation as a regulator of apoptotic calcium release: relevance to cancer. Front Oncol 7:138PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chen B, Zheng B, DeRan M, Jarugumilli GK, Fu J, Brooks YS et al (2016) ZDHHC7-mediated S-palmitoylation of Scribble regulates cell polarity. Nat Chem Biol. 12(9):686–693PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen X, Ma H, Wang Z, Zhang S, Yang H, Fang Z (2017a) ezh2 palmitoylation mediated by zdhhc5 in p53-mutant glioma drives malignant development and progression. Cancer Res. 77(18):4998–5010PubMedCrossRefGoogle Scholar
  29. Chen S, Zhu B, Yin C, Liu W, Han C, Chen B et al (2017b) Palmitoylation-dependent activation of MC1R prevents melanomagenesis. Nature. 549(7672):399–403PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chen H, Sun X, Ge W, Qian Y, Bai R, Zheng S (2017c) A seven-gene signature predicts overall survival of patients with colorectal cancer. Oncotarget. 8(56):95054–95065PubMedGoogle Scholar
  31. Chenette EJ, Abo A, Der CJ (2005) Critical and distinct roles of amino- and carboxyl-terminal sequences in regulation of the biological activity of the Chp atypical Rho GTPase. J Biol Chem. 280(14):13784–13792PubMedCrossRefGoogle Scholar
  32. Choi YW, Bae SM, Kim YW, Lee HN, Kim YW, Park TC, Ro DY, Shin JC, Shin SJ, Seo JS, Ann WS (2007) Gene expression profiles in squamous cell cervical carcinoma using array-based comparative genomic hybridization analysis. Int J Gynecol Cancer. 17:687–696PubMedCrossRefGoogle Scholar
  33. Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell. 149(6):1192–1205PubMedCrossRefGoogle Scholar
  34. Coleman RA, Rao P, Fogelsong RJ, Bardes ES (1992) 2-Bromopalmitoyl-CoA and 2-bromopalmitate: promiscuous inhibitors of membrane-bound enzymes. Biochim Biophys Acta. 1125(2):203–209PubMedCrossRefGoogle Scholar
  35. Coleman DT, Soung YH, Surh YJ, Cardelli JA, Chung J (2015) Curcumin prevents palmitoylation of integrin beta4 in breast cancer cells. PLoS One 10(5):e0125399PubMedPubMedCentralCrossRefGoogle Scholar
  36. Coleman DT, Gray AL, Kridel SJ, Cardelli JA (2016) Palmitoylation regulates the intracellular trafficking and stability of c-Met. Oncotarget. 7(22):32664–32677PubMedPubMedCentralGoogle Scholar
  37. Conibear E, Davis NG (2010) Palmitoylation and depalmitoylation dynamics at a glance. J Cell Sci 123(Pt 23):4007–4010PubMedPubMedCentralCrossRefGoogle Scholar
  38. Conrads TP, Tocci GM, Hood BL, Zhang CO, Guo L, Koch KR et al (2006) CKAP4/p63 is a receptor for the frizzled-8 protein-related antiproliferative factor from interstitial cystitis patients. J Biol Chem 281(49):37836–37843PubMedCrossRefGoogle Scholar
  39. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ (2014) Drugging the undruggable RAS: Mission possible? Nat Rev Drug Discov 13(11):828–851PubMedPubMedCentralCrossRefGoogle Scholar
  40. Cuiffo B, Ren R (2010) Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood. 115(17):3598–3605PubMedPubMedCentralCrossRefGoogle Scholar
  41. Davda D, El Azzouny MA, Tom CT, Hernandez JL, Majmudar JD, Kennedy RT et al (2013) Profiling targets of the irreversible palmitoylation inhibitor 2-bromopalmitate. ACS Chem Biol. 8(9):1912–1917PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dekker FJ, Rocks O, Vartak N, Menninger S, Hedberg C, Balamurugan R et al (2010) Small-molecule inhibition of APT1 affects Ras localization and signaling. Nat Chem Biol 6(6):449–456PubMedCrossRefGoogle Scholar
  43. Devedjiev Y, Dauter Z, Kuznetsov SR, Jones TL, Derewenda ZS (2000) Crystal structure of the human acyl protein thioesterase I from a single X-ray data set to 1.5 A. Structure. 8(11):1137–1146PubMedCrossRefGoogle Scholar
  44. Draper JM, Smith CD (2009) Palmitoyl acyltransferase assays and inhibitors (Review). Mol Membr Biol. 26(1):5–13PubMedPubMedCentralCrossRefGoogle Scholar
  45. Draper JM, Smith CD (2010) DHHC20: a human palmitoyl acyltransferase that causes cellular transformation. Mol Membr Biol. 27(2-3):123–136PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ducker CE, Stettler EM, French KJ, Upson JJ, Smith CD (2004) Huntingtin interacting protein 14 is an oncogenic human protein: palmitoyl acyltransferase. Oncogene. 23(57):9230–9237PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ducker CE, Griffel LK, Smith RA, Keller SN, Zhuang Y, Xia Z et al (2006) Discovery and characterization of inhibitors of human palmitoyl acyltransferases. Mol Cancer Ther. 5(7):1647–1659PubMedPubMedCentralCrossRefGoogle Scholar
  48. Duncan JA, Gilman AG (1998) A cytoplasmic acyl-protein thioesterase that removes palmitate from G protein alpha subunits and p21(RAS). J Biol Chem. 273(25):15830–15837PubMedCrossRefGoogle Scholar
  49. Emi M, Fujiwara Y, Ohata H, Tsuda H, Hirohashi S, Koike M et al (1993) Allelic loss at chromosome band 8p21.3-p22 is associated with progression of hepatocellular carcinoma. Genes Chromosomes Cancer 7(3):152–157PubMedCrossRefGoogle Scholar
  50. Feig C, Tchikov V, Schutze S, Peter ME (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 26(1):221–231PubMedCrossRefGoogle Scholar
  51. Fernandez-Martinez AB, Carmena MJ, Arenas MI, Bajo AM, Prieto JC, Sanchez-Chapado M (2012) Overexpression of vasoactive intestinal peptide receptors and cyclooxygenase-2 in human prostate cancer. Analysis of potential prognostic relevance. Histol Histopathol 27(8):1093–1101PubMedGoogle Scholar
  52. Fox CA, Gartenberg MR (2012) Palmitoylation in the nucleus: a little fat around the edges. Nucleus 3(3):251–255PubMedPubMedCentralCrossRefGoogle Scholar
  53. Frohlich M, Dejanovic B, Kashkar H, Schwarz G, Nussberger S (2014) S-palmitoylation represents a novel mechanism regulating the mitochondrial targeting of BAX and initiation of apoptosis. Cell Death Dis. 5:e1057PubMedPubMedCentralCrossRefGoogle Scholar
  54. Fujiwara Y, Emi M, Ohata H, Kato Y, Nakajima T, Mori T et al (1993a) Evidence for the presence of two tumor suppressor genes on chromosome 8p for colorectal carcinoma. Cancer Res 53(5):1172–1174PubMedGoogle Scholar
  55. Fujiwara Y, Monden M, Mori T, Nakamura Y, Emi M (1993b) Frequent multiplication of the long arm of chromosome 8 in hepatocellular carcinoma. Cancer Res 53(4):857–860PubMedGoogle Scholar
  56. Fujiwara Y, Ohata H, Emi M, Okui K, Koyama K, Tsuchiya E et al (1994) A 3-Mb physical map of the chromosome region 8p21.3-p22, including a 600-kb region commonly deleted in human hepatocellular carcinoma, colorectal cancer, and non-small cell lung cancer. Genes Chromosomes Cancer 10(1):7–14PubMedCrossRefGoogle Scholar
  57. Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS (2004) Identification of PSD-95 palmitoylating enzymes. Neuron. 44(6):987–996PubMedCrossRefGoogle Scholar
  58. Galli LM, Zebarjadi N, Li L, Lingappa VR, Burrus LW (2016) Divergent effects of Porcupine and Wntless on WNT1 trafficking, secretion, and signaling. Exp Cell Res. 347(1):171–183PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ganesan L, Shieh P, Bertozzi CR, Levental I (2017) Click-chemistry based high throughput screening platform for modulators of Ras palmitoylation. Sci Rep. 7:41147PubMedPubMedCentralCrossRefGoogle Scholar
  60. Greaves J, Chamberlain LH (2011) Differential palmitoylation regulates intracellular patterning of SNAP25. J Cell Sci 124(Pt 8):1351–1360PubMedPubMedCentralCrossRefGoogle Scholar
  61. Hadvary P, Sidler W, Meister W, Vetter W, Wolfer H (1991) The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J Biol Chem. 266(4):2021–2027PubMedGoogle Scholar
  62. Hancock JF, Paterson H, Marshall CJ (1990) A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21ras to the plasma membrane. Cell. 63(1):133–139PubMedCrossRefGoogle Scholar
  63. Hardy RY, Resh MD (2012) Identification of N-terminal residues of Sonic Hedgehog important for palmitoylation by Hedgehog acyltransferase. J Biol Chem. 287(51):42881–42889PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hedberg C, Dekker FJ, Rusch M, Renner S, Wetzel S, Vartak N et al (2011) Development of highly potent inhibitors of the Ras-targeting human acyl protein thioesterases based on substrate similarity design. Angew Chem Int Ed Engl. 50(42):9832–9837PubMedCrossRefGoogle Scholar
  65. Heiler S, Mu W, Zoller M, Thuma F (2015) The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun Signal. 13:29PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hernandez JL, Davda D, Cheung See Kit M, Majmudar JD, Won SJ, Gang M et al (2017) APT2 inhibition restores scribble localization and S-palmitoylation in snail-transformed cells. Cell Chem Biol 24(1):87–97PubMedPubMedCentralCrossRefGoogle Scholar
  67. Hirano T, Kishi M, Sugimoto H, Taguchi R, Obinata H, Ohshima N et al (2009) Thioesterase activity and subcellular localization of acylprotein thioesterase 1/lysophospholipase 1. Biochim Biophys Acta. 1791(8):797–805PubMedCrossRefGoogle Scholar
  68. Hofmann K (2000) A superfamily of membrane-bound O-acyltransferases with implications for wnt signaling. Trends Biochem Sci 25(3):111–112PubMedCrossRefGoogle Scholar
  69. Huang K, Sanders S, Singaraja R, Orban P, Cijsouw T, Arstikaitis P et al (2009) Neuronal palmitoyl acyl transferases exhibit distinct substrate specificity. FASEB J. 23(8):2605–2615PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hungermann D, Schmidt H, Natrajan R, Tidow N, Poos K, Reis-Filho JS et al (2011) Influence of whole arm loss of chromosome 16q on gene expression patterns in oestrogen receptor-positive, invasive breast cancer. J Pathol. 224(4):517–528PubMedCrossRefGoogle Scholar
  71. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 5(5):341–354PubMedCrossRefGoogle Scholar
  72. Ikeyama S, Koyama M, Yamaoko M, Sasada R, Miyake M (1993) Suppression of cell motility and metastasis by transfection with human motility-related protein (MRP-1/CD9) DNA. J Exp Med 177(5):1231–1237PubMedCrossRefGoogle Scholar
  73. Jennings BC, Linder ME (2012) DHHC protein S-acyltransferases use similar ping-pong kinetic mechanisms but display different acyl-CoA specificities. J Biol Chem 287(10):7236–7245PubMedPubMedCentralCrossRefGoogle Scholar
  74. Jennings BC, Nadolski MJ, Ling Y, Baker MB, Harrison ML, Deschenes RJ et al (2009) 2-Bromopalmitate and 2-(2-hydroxy-5-nitro-benzylidene)-benzo[b]thiophen-3-one inhibit DHHC-mediated palmitoylation in vitro. J Lipid Res. 50(2):233–242PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jones ML, Collins MO, Goulding D, Choudhary JS, Rayner JC (2012) Analysis of protein palmitoylation reveals a pervasive role in Plasmodium development and pathogenesis. Cell Host Microbe. 12(2):246–258PubMedPubMedCentralCrossRefGoogle Scholar
  76. Jung HC, Kim SH, Lee JH, Kim JH, Han SW (2017) Gene regulatory network analysis for triple-negative breast neoplasms by using gene expression data. J Breast Cancer. 20(3):240–245PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kang R, Wan J, Arstikaitis P, Takahashi H, Huang K, Bailey AO et al (2008a) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456(7224):904–909PubMedPubMedCentralCrossRefGoogle Scholar
  78. Kang JU, Koo SH, Kwon KC, Park JW, Kim JM (2008b) Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet Cytogenet 182(1):1–11PubMedCrossRefGoogle Scholar
  79. Keay S (2008) Cell signaling in interstitial cystitis/painful bladder syndrome. Cell Signal 20(12):2174–2179PubMedCrossRefGoogle Scholar
  80. Kharbanda A, Runkle K, Wang W, Witze ES (2017) Induced sensitivity to EGFR inhibitors is mediated by palmitoylated cysteine 1025 of EGFR and requires oncogenic Kras. Biochem Biophys Res Commun. 493(1):213–219PubMedPubMedCentralCrossRefGoogle Scholar
  81. Killary AM, Wolf ME, Giambernardi TA, Naylor SL (1992) Definition of a tumor suppressor locus within human chromosome 3p21-p22. Proc Natl Acad Sci USA. 89(22):10877–10881PubMedCrossRefGoogle Scholar
  82. Kinney N, Varghese RT, Anandakrishnan R, Garner HRS (2017) ZDHHC3 as a risk and mortality marker for breast cancer in African American women. Cancer Inform 16:1176935117746644PubMedPubMedCentralCrossRefGoogle Scholar
  83. Knowles MA, Shaw ME, Proctor AJ (1993) Deletion mapping of chromosome 8 in cancers of the urinary bladder using restriction fragment length polymorphisms and microsatellite polymorphisms. Oncogene 8(5):1357–1364PubMedGoogle Scholar
  84. Kong E, Peng S, Chandra G, Sarkar C, Zhang Z, Bagh MB et al (2013) Dynamic palmitoylation links cytosol-membrane shuttling of acyl-protein thioesterase-1 and acyl-protein thioesterase-2 with that of proto-oncogene H-ras product and growth-associated protein-43. J Biol Chem 288(13):9112–9125PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kuhn S, Koch M, Nubel T, Ladwein M, Antolovic D, Klingbeil P et al (2007) A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res. 5(6):553–567PubMedCrossRefGoogle Scholar
  86. Kumari S, Devi G, Badana A, Dasari VR, Malla RR (2015) CD151-A striking marker for cancer therapy. Biomark Cancer 7:7–11PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T et al (2006) Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res. 66(21):10439–10448PubMedCrossRefGoogle Scholar
  88. La Rosa P, Pesiri V, Leclercq G, Marino M, Acconcia F (2012) Palmitoylation regulates 17beta-estradiol-induced estrogen receptor-alpha degradation and transcriptional activity. Mol Endocrinol. 26(5):762–774PubMedPubMedCentralCrossRefGoogle Scholar
  89. Lee JJ, Perera RM, Wang H, Wu DC, Liu XS, Han S et al (2014) Stromal response to Hedgehog signaling restrains pancreatic cancer progression. Proc Natl Acad Sci USA 111(30):E3091–E3100PubMedCrossRefGoogle Scholar
  90. Lemonidis K, Sanchez-Perez MC, Chamberlain LH (2015) Identification of a novel sequence motif recognized by the ankyrin repeat domain of zDHHC17/13 S-acyltransferases. J Biol Chem. 290(36):21939–21950PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lemonidis K, MacLeod R, Baillie GS, Chamberlain LH (2017) Peptide array-based screening reveals a large number of proteins interacting with the ankyrin-repeat domain of the zDHHC17 S-acyltransferase. J Biol Chem. 292(42):17190–17202PubMedPubMedCentralCrossRefGoogle Scholar
  92. Leong WF, Zhou T, Lim GL, Li B (2009) Protein palmitoylation regulates osteoblast differentiation through BMP-induced osterix expression. PLoS One. 4(1):e4135PubMedPubMedCentralCrossRefGoogle Scholar
  93. Li SX, Tang GS, Zhou DX, Pan YF, Tan YX, Zhang J et al (2014) Prognostic significance of cytoskeleton-associated membrane protein 4 and its palmitoyl acyltransferase DHHC2 in hepatocellular carcinoma. Cancer 120(10):1520–1531PubMedCrossRefGoogle Scholar
  94. Lin DT, Conibear E (2015) ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. Elife 4:e11306PubMedPubMedCentralCrossRefGoogle Scholar
  95. Lin DTS, Davis NG, Conibear E (2017) Targeting the Ras palmitoylation/depalmitoylation cycle in cancer. Biochem Soc Trans. 45(4):913–921PubMedCrossRefGoogle Scholar
  96. Linder ME, Deschenes RJ (2007) Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 8(1):74–84PubMedCrossRefGoogle Scholar
  97. Liu S, Zeng Y, Li Y, Guo W, Liu J, Ouyang N (2014) VPAC1 overexpression is associated with poor differentiation in colon cancer. Tumour Biol. 35(7):6397–6404PubMedCrossRefGoogle Scholar
  98. Liu P, Jiao B, Zhang R, Zhao H, Zhang C, Wu M et al (2016) Palmitoylacyltransferase Zdhhc9 inactivation mitigates leukemogenic potential of oncogenic Nras. Leukemia. 30(5):1225–1228PubMedCrossRefGoogle Scholar
  99. Lobo S, Greentree WK, Linder ME, Deschenes RJ (2002) Identification of a Ras palmitoyltransferase in Saccharomyces cerevisiae. J Biol Chem. 277(43):41268–41273PubMedCrossRefGoogle Scholar
  100. Lynch RD, Francis SA, McCarthy KM, Casas E, Thiele C, Schneeberger EE (2007) Cholesterol depletion alters detergent-specific solubility profiles of selected tight junction proteins and the phosphorylation of occludin. Exp Cell Res. 313(12):2597–2610PubMedPubMedCentralCrossRefGoogle Scholar
  101. Manna JD, Wepy JA, Hsu KL, Chang JW, Cravatt BF, Marnett LJ (2014) Identification of the major prostaglandin glycerol ester hydrolase in human cancer cells. J Biol Chem 289(49):33741–33753PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mansilla F, Birkenkamp-Demtroder K, Kruhoffer M, Sorensen FB, Andersen CL, Laiho P et al (2007) Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups. Br J Cancer. 96(12):1896–1903PubMedPubMedCentralCrossRefGoogle Scholar
  103. Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF (2012) Global profiling of dynamic protein palmitoylation. Nat Methods 9(1):84–89CrossRefGoogle Scholar
  104. Martinez A, Walker RA, Shaw JA, Dearing SJ, Maher ER, Latif F (2001) Chromosome 3p allele loss in early invasive breast cancer: detailed mapping and association with clinicopathological features. Mol Pathol 54(5):300–306PubMedPubMedCentralCrossRefGoogle Scholar
  105. Matevossian A, Resh MD (2015) Hedgehog Acyltransferase as a target in estrogen receptor positive, HER2 amplified, and tamoxifen resistant breast cancer cells. Mol Cancer. 14:72PubMedPubMedCentralCrossRefGoogle Scholar
  106. Matika CA, Wasilewski M, Arnott JA, Planey SL (2012) Antiproliferative factor regulates connective tissue growth factor (CTGF/CCN2) expression in T24 bladder carcinoma cells. Mol Biol Cell 23(10):1976–1985PubMedPubMedCentralCrossRefGoogle Scholar
  107. Mill P, Lee AW, Fukata Y, Tsutsumi R, Fukata M, Keighren M et al (2009) Palmitoylation regulates epidermal homeostasis and hair follicle differentiation. PLoS Genet. 5(11):e1000748PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47(6):1118–1127PubMedCrossRefGoogle Scholar
  109. Miyake M, Inufusa H, Adachi M, Ishida H, Hashida H, Tokuhara T et al (2000) Suppression of pulmonary metastasis using adenovirally motility related protein-1 (MRP-1/CD9) gene delivery. Oncogene 19(46):5221–5226PubMedCrossRefGoogle Scholar
  110. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR et al (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 366(1):2–16PubMedCrossRefGoogle Scholar
  111. Oh Y, Jeon YJ, Hong GS, Kim I, Woo HN, Jung YK (2012) Regulation in the targeting of TRAIL receptor 1 to cell surface via GODZ for TRAIL sensitivity in tumor cells. Cell Death Differ. 19(7):1196–1207PubMedPubMedCentralCrossRefGoogle Scholar
  112. Ohata H, Emi M, Fujiwara Y, Higashino K, Nakagawa K, Futagami R et al (1993) Deletion mapping of the short arm of chromosome 8 in non-small cell lung carcinoma. Genes Chromosomes Cancer 7(2):85–88PubMedCrossRefGoogle Scholar
  113. Ohno Y, Kihara A, Sano T, Igarashi Y (2006) Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta 1761(4):474–483PubMedCrossRefGoogle Scholar
  114. Onda T, Yamamoto N, Yakushiji T, Takagi R, Kamiyama I, Uchiyama T, Takano N, Shibahara T (2009) Aberrant expression of ZDHHC14 gene in human tongue squamous cell carcinoma. EJC (Suppl. 7)Google Scholar
  115. Oo HZ, Sentani K, Sakamoto N, Anami K, Naito Y, Uraoka N et al (2014) Overexpression of ZDHHC14 promotes migration and invasion of scirrhous type gastric cancer. Oncol Rep 32(1):403–410PubMedCrossRefGoogle Scholar
  116. Oyama T, Miyoshi Y, Koyama K, Nakagawa H, Yamori T, Ito T et al (2000) Isolation of a novel gene on 8p21.3-22 whose expression is reduced significantly in human colorectal cancers with liver metastasis. Genes Chromosomes Cancer 29(1):9–15PubMedCrossRefGoogle Scholar
  117. Patek CE, Arends MJ, Wallace WA, Luo F, Hagan S, Brownstein DG et al (2008) Mutationally activated K-ras 4A and 4B both mediate lung carcinogenesis. Exp Cell Res. 314(5):1105–1114PubMedCrossRefGoogle Scholar
  118. Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER (2007) A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem. 282(31):22278–22288PubMedCrossRefGoogle Scholar
  119. Pedram A, Razandi M, Deschenes RJ, Levin ER (2012) DHHC-7 and -21 are palmitoyl acyltransferases for sex steroid receptors. Mol Biol Cell 23(1):188–199PubMedPubMedCentralCrossRefGoogle Scholar
  120. Pedro MP, Vilcaes AA, Tomatis VM, Oliveira RG, Gomez GA, Daniotti JL (2013) 2-Bromopalmitate reduces protein deacylation by inhibition of acyl-protein thioesterase enzymatic activities. PLoS One. 8(10):e75232PubMedPubMedCentralCrossRefGoogle Scholar
  121. Pedro MP, Vilcaes AA, Gomez GA, Daniotti JL (2017) Individual S-acylated cysteines differentially contribute to H-Ras endomembrane trafficking and acylation/deacylation cycles. Mol Biol Cell. 28(7):962–974PubMedPubMedCentralCrossRefGoogle Scholar
  122. Peng C, Zhang Z, Wu J, Lv Z, Tang J, Xie H et al (2014) A critical role for ZDHHC2 in metastasis and recurrence in human hepatocellular carcinoma. Biomed Res Int 2014:832712PubMedPubMedCentralGoogle Scholar
  123. Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP et al (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem. 273(22):14037–14045PubMedCrossRefGoogle Scholar
  124. Perez CJ, Mecklenburg L, Jaubert J, Martinez-Santamaria L, Iritani BM, Espejo A et al (2015) Increased susceptibility to skin carcinogenesis associated with a spontaneous mouse mutation in the palmitoyl transferase Zdhhc13 gene. J Invest Dermatol. 135(12):3133–3143PubMedPubMedCentralCrossRefGoogle Scholar
  125. Petrova E, Rios-Esteves J, Ouerfelli O, Glickman JF, Resh MD (2013) Inhibitors of Hedgehog acyltransferase block Sonic Hedgehog signaling. Nat Chem Biol. 9(4):247–249PubMedPubMedCentralCrossRefGoogle Scholar
  126. Petrova E, Matevossian A, Resh MD (2015) Hedgehog acyltransferase as a target in pancreatic ductal adenocarcinoma. Oncogene. 34(2):263–268PubMedCrossRefGoogle Scholar
  127. Planey SL, Keay SK, Zhang CO, Zacharias DA (2009) Palmitoylation of cytoskeleton associated protein 4 by DHHC2 regulates antiproliferative factor-mediated signaling. Mol Biol Cell 20(5):1454–1463PubMedPubMedCentralCrossRefGoogle Scholar
  128. Plowman SJ, Berry RL, Bader SA, Luo F, Arends MJ, Harrison DJ et al (2006) K-ras 4A and 4B are co-expressed widely in human tissues, and their ratio is altered in sporadic colorectal cancer. J Exp Clin Cancer Res. 25(2):259–267PubMedGoogle Scholar
  129. Ponimaskin E, Dityateva G, Ruonala MO, Fukata M, Fukata Y, Kobe F et al (2008) Fibroblast growth factor-regulated palmitoylation of the neural cell adhesion molecule determines neuronal morphogenesis. J Neurosci. 28(36):8897–8907PubMedPubMedCentralCrossRefGoogle Scholar
  130. Rana MS, Kumar P, Lee CJ, Verardi R, Rajashankar KR, Banerjee A (2018) Fatty acyl recognition and transfer by an integral membrane S-acyltransferase. Science 359(6372)PubMedPubMedCentralCrossRefGoogle Scholar
  131. Resh MD (2006) Use of analogs and inhibitors to study the functional significance of protein palmitoylation. Methods. 40(2):191–197PubMedPubMedCentralCrossRefGoogle Scholar
  132. Resh MD (2017) Palmitoylation of proteins in cancer. Biochem Soc Trans 45(2):409–416PubMedCrossRefGoogle Scholar
  133. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25(6):735–747PubMedPubMedCentralCrossRefGoogle Scholar
  134. Rinker-Schaeffer CW, O’Keefe JP, Welch DR, Theodorescu D (2006) Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clin Cancer Res. 12(13):3882–3889PubMedPubMedCentralCrossRefGoogle Scholar
  135. Rodgers UR, Lanyon-Hogg T, Masumoto N, Ritzefeld M, Burke R, Blagg J et al (2016) Characterization of hedgehog acyltransferase inhibitors identifies a small molecule probe for hedgehog signaling by cancer cells. ACS Chem Biol. 11(12):3256–3262PubMedPubMedCentralCrossRefGoogle Scholar
  136. Roskoski R Jr (2014) The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 79:34–74PubMedCrossRefGoogle Scholar
  137. Rossin A, Durivault J, Chakhtoura-Feghali T, Lounnas N, Gagnoux-Palacios L, Hueber AO (2015) Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability. Cell Death Differ. 22(4):643–653PubMedCrossRefGoogle Scholar
  138. Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN et al (2006) Global analysis of protein palmitoylation in yeast. Cell 125(5):1003–1013PubMedPubMedCentralCrossRefGoogle Scholar
  139. Rowley H, Jones A, Spandidos D, Field J (1996) Definition of a tumor suppressor gene locus on the short arm of chromosome 3 in squamous cell carcinoma of the head and neck by means of microsatellite markers. Arch Otolaryngol Head Neck Surg 122(5):497–501PubMedCrossRefGoogle Scholar
  140. Runkle KB, Kharbanda A, Stypulkowski E, Cao XJ, Wang W, Garcia BA et al (2016) Inhibition of DHHC20-mediated EGFR palmitoylation creates a dependence on EGFR signaling. Mol Cell. 62(3):385–396PubMedPubMedCentralCrossRefGoogle Scholar
  141. Rusch M, Zimmermann TJ, Burger M, Dekker FJ, Gormer K, Triola G et al (2011) Identification of acyl protein thioesterases 1 and 2 as the cellular targets of the Ras-signaling modulators palmostatin B and M. Angew Chem Int Ed Engl 50(42):9838–9842PubMedCrossRefGoogle Scholar
  142. Saitoh T, Mine T, Katoh M (2002) Frequent up-regulation of WNT5A mRNA in primary gastric cancer. Int J Mol Med. 9(5):515–519PubMedGoogle Scholar
  143. Sanders SS, Martin DD, Butland SL, Lavallee-Adam M, Calzolari D, Kay C et al (2015) Curation of the mammalian palmitoylome indicates a pivotal role for palmitoylation in diseases and disorders of the nervous system and cancers. PLoS Comput Biol 11(8):e1004405PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sardjono CT, Harbour SN, Yip JC, Paddock C, Tridandapani S, Newman PJ et al (2006) Palmitoylation at Cys595 is essential for PECAM-1 localisation into membrane microdomains and for efficient PECAM-1-mediated cytoprotection. Thromb Haemost 96(6):756–766PubMedCrossRefGoogle Scholar
  145. Sekido Y, Ahmadian M, Wistuba II, Latif F, Bader S, Wei MH et al (1998) Cloning of a breast cancer homozygous deletion junction narrows the region of search for a 3p21.3 tumor suppressor gene. Oncogene. 16(24):3151–3157PubMedCrossRefGoogle Scholar
  146. Shahinian S, Silvius JR (1995) Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry 34(11):3813–3822PubMedCrossRefGoogle Scholar
  147. Sharma C, Hemler ME (2017) Multiple pro-tumor roles for protein acyltransferase DHHC3. Oncoscience 4(11–12):152–153PubMedPubMedCentralGoogle Scholar
  148. Sharma C, Yang XH, Hemler ME (2008) DHHC2 affects palmitoylation, stability, and functions of tetraspanins CD9 and CD151. Mol Biol Cell 19(8):3415–3425PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sharma C, Rabinovitz I, Hemler ME (2012) Palmitoylation by DHHC3 is critical for the function, expression, and stability of integrin alpha6beta4. Cell Mol Life SciGoogle Scholar
  150. Sharma C, Wang HX, Li Q, Knoblich K, Reisenbichler ES, Richardson AL et al (2017) Protein acyltransferase DHHC3 regulates breast tumor growth, oxidative stress, and senescence. Cancer Res 77(24):6880–6890PubMedPubMedCentralCrossRefGoogle Scholar
  151. Stafford LJ, Vaidya KS, Welch DR (2008) Metastasis suppressors genes in cancer. Int J Biochem Cell Biol. 40(5):874–891PubMedCrossRefGoogle Scholar
  152. Stark MS, Woods SL, Gartside MG, Bonazzi VF, Dutton-Regester K, Aoude LG et al (2011) Frequent somatic mutations in MAP3K5 and MAP3K9 in metastatic melanoma identified by exome sequencing. Nat Genet. 44(2):165–169PubMedPubMedCentralCrossRefGoogle Scholar
  153. Steffan JJ, Coleman DT, Cardelli JA (2011) The HGF-met signaling axis: emerging themes and targets of inhibition. Curr Protein Pept Sci 12(1):12–22PubMedCrossRefPubMedCentralGoogle Scholar
  154. Stypulkowski E, Asangani IA, Witze ES (2018) The depalmitoylase APT1 directs the asymmetric partitioning of Notch and Wnt signaling during cell division. Sci Signal 11(511)PubMedPubMedCentralCrossRefGoogle Scholar
  155. Sugimoto H, Hayashi H, Yamashita S (1996) Purification, cDNA cloning, and regulation of lysophospholipase from rat liver. J Biol Chem 271(13):7705–7711PubMedCrossRefPubMedCentralGoogle Scholar
  156. Swarthout JT, Lobo S, Farh L, Croke MR, Greentree WK, Deschenes RJ et al (2005) DHHC9 and GCP16 constitute a human protein fatty acyltransferase with specificity for H- and N-Ras. J Biol Chem. 280(35):31141–31148PubMedCrossRefPubMedCentralGoogle Scholar
  157. Termini CM, Gillette JM (2017) Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol. 5:34PubMedPubMedCentralCrossRefGoogle Scholar
  158. Thankamony SP, Knudson W (2006) Acylation of CD44 and its association with lipid rafts are required for receptor and hyaluronan endocytosis. J Biol Chem. 281(45):34601–34609PubMedPubMedCentralCrossRefGoogle Scholar
  159. Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY et al (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature. 425(6960):851–856PubMedPubMedCentralCrossRefGoogle Scholar
  160. Thuma F, Zoller M (2013) EpCAM-associated claudin-7 supports lymphatic spread and drug resistance in rat pancreatic cancer. Int J Cancer. 133(4):855–866PubMedCrossRefPubMedCentralGoogle Scholar
  161. Thuma F, Heiler S, Schnolzer M, Zoller M (2016) Palmitoylated claudin7 captured in glycolipid-enriched membrane microdomains promotes metastasis via associated transmembrane and cytosolic molecules. Oncotarget. 7(21):30659–30677PubMedPubMedCentralCrossRefGoogle Scholar
  162. Tian L, McClafferty H, Knaus HG, Ruth P, Shipston MJ (2012) Distinct acyl protein transferases and thioesterases control surface expression of calcium-activated potassium channels. J Biol Chem. 287(18):14718–14725PubMedPubMedCentralCrossRefGoogle Scholar
  163. To MD, Wong CE, Karnezis AN, Del Rosario R, Di Lauro R, Balmain A (2008) Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet. 40(10):1240–1244PubMedPubMedCentralCrossRefGoogle Scholar
  164. Todd MC, Xiang RH, Garcia DK, Kerbacher KE, Moore SL, Hensel CH et al (1996) An 80 Kb P1 clone from chromosome 3p21.3 suppresses tumor growth in vivo. Oncogene. 13(11):2387–2396PubMedPubMedCentralGoogle Scholar
  165. Tomatis VM, Trenchi A, Gomez GA, Daniotti JL (2010) Acyl-protein thioesterase 2 catalyzes the deacylation of peripheral membrane-associated GAP-43. PLoS One 5(11):e15045PubMedPubMedCentralCrossRefGoogle Scholar
  166. Tortosa E, Adolfs Y, Fukata M, Pasterkamp RJ, Kapitein LC, Hoogenraad CC (2017) Dynamic palmitoylation targets MAP6 to the axon to promote microtubule stabilization during neuronal polarization. Neuron. 94(4):809–825. e7PubMedCrossRefPubMedCentralGoogle Scholar
  167. Toyoda T, Sugimoto H, Yamashita S (1999) Sequence, expression in Escherichia coli, and characterization of lysophospholipase II. Biochim Biophys Acta 1437(2):182–193PubMedCrossRefPubMedCentralGoogle Scholar
  168. Ulku AS, Der CJ (2003) Ras signaling, deregulation of gene expression and oncogenesis. Cancer Treat Res 115:189–208PubMedCrossRefPubMedCentralGoogle Scholar
  169. Valdehita A, Carmena MJ, Bajo AM, Prieto JC (2012) RNA interference-directed silencing of VPAC1 receptor inhibits VIP effects on both EGFR and HER2 transactivation and VEGF secretion in human breast cancer cells. Mol Cell Endocrinol 348(1):241–246PubMedCrossRefPubMedCentralGoogle Scholar
  170. Van Itallie CM, Gambling TM, Carson JL, Anderson JM (2005) Palmitoylation of claudins is required for efficient tight-junction localization. J Cell Sci. 118(Pt 7):1427–1436PubMedCrossRefPubMedCentralGoogle Scholar
  171. Vartak N, Papke B, Grecco HE, Rossmannek L, Waldmann H, Hedberg C et al (2014) The autodepalmitoylating activity of APT maintains the spatial organization of palmitoylated membrane proteins. Biophys J 106(1):93–105PubMedPubMedCentralCrossRefGoogle Scholar
  172. Verkruyse LA, Hofmann SL (1996) Lysosomal targeting of palmitoyl-protein thioesterase. J Biol Chem 271(26):15831–15836PubMedCrossRefPubMedCentralGoogle Scholar
  173. Vijai J, Kirchhoff T, Schrader KA, Brown J, Dutra-Clarke AV, Manschreck C et al (2013) Susceptibility loci associated with specific and shared subtypes of lymphoid malignancies. PLoS Genet 9(1):e1003220PubMedPubMedCentralCrossRefGoogle Scholar
  174. Vujic I, Sanlorenzo M, Esteve-Puig R, Vujic M, Kwong A, Tsumura A et al (2016) Acyl protein thioesterase 1 and 2 (APT-1, APT-2) inhibitors palmostatin B, ML348 and ML349 have different effects on NRAS mutant melanoma cells. Oncotarget. 7(6):7297–7306PubMedPubMedCentralCrossRefGoogle Scholar
  175. Wang W, Runkle KB, Terkowski SM, Ekaireb RI, Witze ES (2015) Protein depalmitoylation is induced by Wnt5a and promotes polarized cell behavior. J Biol Chem. 290(25):15707–15716PubMedPubMedCentralCrossRefGoogle Scholar
  176. Webb Y, Hermida-Matsumoto L, Resh MD (2000) Inhibition of protein palmitoylation, raft localization, and T cell signaling by 2-bromopalmitate and polyunsaturated fatty acids. J Biol Chem. 275(1):261–270PubMedCrossRefGoogle Scholar
  177. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M et al (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 1(3):279–288PubMedCrossRefGoogle Scholar
  178. Weiss J (2012) First line erlotinib for NSCLC patients not selected by EGFR mutation: keep carrying the TORCH or time to let the flame die? Transl Lung Cancer Res. 1(3):219–223PubMedPubMedCentralGoogle Scholar
  179. Won SJ, Davda D, Labby KJ, Hwang SY, Pricer R, Majmudar JD et al (2016) Molecular mechanism for isoform-selective inhibition of Acyl protein thioesterases 1 and 2 (APT1 and APT2). ACS Chem Biol. 11(12):3374–3382PubMedPubMedCentralCrossRefGoogle Scholar
  180. Won SJ, Cheung See Kit M, Martin BR (2018) Protein depalmitoylases. Crit Rev Biochem Mol Biol 53(1):83–98PubMedCrossRefGoogle Scholar
  181. Xu J, Hedberg C, Dekker FJ, Li Q, Haigis KM, Hwang E et al (2012) Inhibiting the palmitoylation/depalmitoylation cycle selectively reduces the growth of hematopoietic cells expressing oncogenic Nras. Blood. 119(4):1032–1035PubMedPubMedCentralCrossRefGoogle Scholar
  182. Yamamoto Y, Chochi Y, Matsuyama H, Eguchi S, Kawauchi S, Furuya T et al (2007) Gain of 5p15.33 is associated with progression of bladder cancer. Oncology. 72(1-2):132–138PubMedCrossRefGoogle Scholar
  183. Yan SM, Tang JJ, Huang CY, Xi SY, Huang MY, Liang JZ et al (2013) Reduced expression of ZDHHC2 is associated with lymph node metastasis and poor prognosis in gastric adenocarcinoma. PLoS One. 8(2):e56366PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yang W, Di Vizio D, Kirchner M, Steen H, Freeman MR (2010) Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics 9(1):54–70PubMedCrossRefGoogle Scholar
  185. Yaremko ML, Kutza C, Lyzak J, Mick R, Recant WM, Westbrook CA (1996) Loss of heterozygosity from the short arm of chromosome 8 is associated with invasive behavior in breast cancer. Genes Chromosomes Cancer 16(3):189–195PubMedCrossRefGoogle Scholar
  186. Yeh DC, Duncan JA, Yamashita S, Michel T (1999) Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca(2+)-calmodulin. J Biol Chem 274(46):33148–33154PubMedCrossRefGoogle Scholar
  187. Yeste-Velasco M, Mao X, Grose R, Kudahetti SC, Lin D, Marzec J et al (2014) Identification of ZDHHC14 as a novel human tumour suppressor gene. J Pathol. 232(5):566–577PubMedCrossRefGoogle Scholar
  188. Yeste-Velasco M, Linder ME, Lu YJ (2015) Protein S-palmitoylation and cancer. Biochim Biophys Acta 1856(1):107–120PubMedGoogle Scholar
  189. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M (2016) Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci 36(24):6431–6444PubMedPubMedCentralCrossRefGoogle Scholar
  190. Young E, Zheng ZY, Wilkins AD, Jeong HT, Li M, Lichtarge O et al (2014) Regulation of Ras localization and cell transformation by evolutionarily conserved palmitoyltransferases. Mol Cell Biol. 34(3):374–385PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yu L, Reader JC, Chen C, Zhao XF, Ha JS, Lee C et al (2011) Activation of a novel palmitoyltransferase ZDHHC14 in acute biphenotypic leukemia and subsets of acute myeloid leukemia. Leukemia. 25(2):367–371PubMedCrossRefGoogle Scholar
  192. Yu R, Liu H, Peng X, Cui Y, Song S, Wang L et al (2017) The palmitoylation of the N-terminal extracellular Cys37 mediates the nuclear translocation of VPAC1 contributing to its anti-apoptotic activity. Oncotarget. 8(26):42728–42741PubMedPubMedCentralGoogle Scholar
  193. Zacharias DA, Mullen M, Planey SL (2012) Antiproliferative factor-induced changes in phosphorylation and palmitoylation of cytoskeleton-associated protein-4 regulate its nuclear translocation and DNA binding. Int J Cell Biol 2012:150918PubMedPubMedCentralCrossRefGoogle Scholar
  194. Zecchini S, Cavallaro U (2010) Neural cell adhesion molecule in cancer: expression and mechanisms. Adv Exp Med Biol. 663:319–333PubMedCrossRefGoogle Scholar
  195. Zeidman R, Jackson CS, Magee AI (2009) Protein acyl thioesterases (Review). Mol Membr Biol 26(1):32–41PubMedCrossRefGoogle Scholar
  196. Zhang LS, Lum L (2016) Delivery of the Porcupine Inhibitor WNT974 in Mice. Methods Mol Biol. 1481:111–117PubMedPubMedCentralCrossRefGoogle Scholar
  197. Zhang J, Planey SL, Ceballos C, Stevens SM Jr, Keay SK, Zacharias DA (2008) Identification of CKAP4/p63 as a major substrate of the palmitoyl acyltransferase DHHC2, a putative tumor suppressor, using a novel proteomics method. Mol Cell Proteomics 7(7):1378–1388PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zhao H, Liu P, Zhang R, Wu M, Li D, Zhao X et al (2015) Roles of palmitoylation and the KIKK membrane-targeting motif in leukemogenesis by oncogenic KRAS4A. J Hematol Oncol. 8:132PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Geisinger Commonwealth School of MedicineScrantonUSA

Personalised recommendations