Preclinical Non-invasive Imaging in Cancer Research and Drug Discovery: An Overview

  • Pardeep Kumar
  • Baljinder Singh
  • Pradip Chaudhari
  • Jithin Jose
  • Anthony Butler
  • Hannah Prebble
  • Mahdieh Moghiseh
  • The MARS Collaboration


The increased understanding of complex biological processes in cancer initiation and progression has proportionately increased new anticancer drug development which is presently the top priority research field. The process of drug discovery and development is expensive, tedious, and unpredictable. Several steps are involved in this process, which requires strong multidisciplinary interaction. The duration of the procedure depends upon the validation of each step. Current data shows that out of the 10,000 newly screened compounds, only 250 enter preclinical testing and 5 enter clinical phase. However, only one compound gets regulatory approval. The percentage of success in developing a drug is very low, in spite of huge time spent and financial investments. Therefore, it is utmost important to refine every step of the drug development process so as to precisely evaluate the new compounds. The process of drug development consists of various phases like absorption, distribution, metabolism and excretion. All these phases can be precisely studied using several advanced tools and one such tool is non-invasive preclinical imaging. This chapter deals with various preclinical imaging modalities having huge potential in anticancer drug discovery. The imaging modalities discussed in details are positron emission tomography (PET), single photon emission computed tomography (SPECT), computed tomography (CT), optical, ultrasound and photoacoustic (US-PA) and spectral imaging. These modalities are complimentary to each other and need to be applied on the basis of information to be gathered. The common study/imaging protocol used in anticancer drug development has been mentioned with appropriate image data. The modalities such as photoacoustic and spectral imaging have huge potential for clinical applications due to their potential to characterise tissue and underlying pathophysiological differences.


Preclinical imaging Animal model Positron emission tomography Single photon emission computed tomography Ultrasound Photoacoustic imaging and spectral imaging 


Acknowledgements for Sect. 17.17

  1. (a)

    MARS Collaboration and MARS Bioimaging Ltd.

  2. (b)

    Ministry of Business, Innovation and Employment (MBIE), New Zealand, for funding (UOCX1404) through the MedTech CoRE.

  3. (c)

    CERN and the Medipix2, Medipix3 and Medipix4 collaborations.



  1. Aamir R, Chernoglazov A, Bateman C, Butler A, Butler P, Anderson N, Bell S, Panta R, Healy J, Mohr J (2014) Mars spectral molecular imaging of lamb tissue: data collection and image analysis. J Instrum 9:P02005CrossRefGoogle Scholar
  2. Akabani G, Cokgor I, Coleman RE, González Trotter D, Wong TZ, Friedman HS, Friedman AH, Garcia-Turner A, Herndon JE, Delong D, Mclendon RE, Zhao XG, Pegram CN, Provenzale JM, Bigner DD, Zalutsky MR (2000) Dosimetry and dose-response relationships in newly diagnosed patients with malignant gliomas treated with Iodine-131-labeled anti-tenascin monoclonal antibody 81C6 therapy. Int J Radiat Oncol Biol Phys 46:947–958PubMedCrossRefPubMedCentralGoogle Scholar
  3. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16PubMedCrossRefPubMedCentralGoogle Scholar
  4. Almuhaideb A, Papathanasiou N, Bomanji J (2011) 18F-FDG PET/CT imaging in. Oncology 31(1):3–13Google Scholar
  5. Anderson CR, Rychak JJ, Backer M, Backer J, Ley K, Klibanov AL (2010a) ScVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Investig Radiol 45(10):579–585CrossRefGoogle Scholar
  6. Anderson N, Butler A, Scott N, Cook N, Butzer J, Schleich N, Firsching M, Grasset R, De Ruiter N, Campbell M (2010b) Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE. Eur Radiol 20:2126–2134PubMedCrossRefPubMedCentralGoogle Scholar
  7. Anderson NG, Butler AP (2014) Clinical applications of spectral molecular imaging: potential and challenges. Contrast Media Mol Imaging 9:3–12PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ballabriga R, Alozy J, Blaj G, Campbell M, Fiederle M, Frojdh E, Heijne E, Llopart X, Pichotka M, Procz S (2013) The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J Instrum 8:C02016CrossRefGoogle Scholar
  9. Barkhof F, Simon JH, Fazekas F, Rovaris M, Kappos L, De Stefano N, Polman CH, Petkau J, Radue EW, Sormani MP, Li DK, O’connor P, Montalban X, Miller DH, Filippi M (2012) MRI monitoring of immunomodulation in relapse-onset multiple sclerosis trials. Nat Rev Neurol 8(1):13–21CrossRefGoogle Scholar
  10. Barr RG (2017) How to develop a contrast-enhanced ultrasound program. J Ultrasound Med 36(6):1225–1240PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bateman CJ, Mcmahon J, Malpas A, De Ruiter N, Bell S, Butler AP, Butler PH, Renaud PF (2013) Segmentation enhances material analysis in multi-energy CT: a simulation study. In: 28th International Conference of Image and Vision Computing New Zealand (IVCNZ), 2013. IEEE, pp 190–195Google Scholar
  12. Bateman CJ, Rajendran K, De Ruiter NJ, Butler AP, Butler PH, Renaud PF (2015) The hidden K-edge signal in K-edge imaging. arXiv preprint arXiv:1506.04223Google Scholar
  13. Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L, Rigo P, Green A (2002) Increased uptake of the apoptosis-imaging agent99mTc recombinant human annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res 8(9):2766–2774PubMedPubMedCentralGoogle Scholar
  14. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410PubMedCrossRefPubMedCentralGoogle Scholar
  15. Berridge MS, Heald DL (1999) In vivo characterization of inhaled pharmaceuticals using quantitative positron emission tomography. J Clin Pharmacol 39(S1):25S–29SPubMedCrossRefPubMedCentralGoogle Scholar
  16. Blankenberg FG, Backer MV, Levashova Z, Patel V, Backer JM (2006) In vivo tumor angiogenesis imaging with site-specific labeled99mTc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging 33(7):841–848PubMedCrossRefPubMedCentralGoogle Scholar
  17. Cai W, Rao J, Gambhir SS, Chen X (2006) How molecular imaging is speeding up antiangiogenic drug development. Mol Cancer Ther 5(11):2624–2633PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cerussi AE, Tanamai VW, Mehta RS, Hsiang D, Butler J, Tromberg BJ (2010) Frequent optical imaging during breast Cancer neoadjuvant chemotherapy reveals dynamic tumor physiology in an individual patient. Acad Radiol 17(8):1031–1039PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chandrani P, Prabhash K, Prasad R, Sethunath V, Ranjan M, Iyer P, Aich J, Dhamne H, Iyer DN, Upadhyay P, Mohanty B, Chandna P, Kumar R, Joshi A, Noronha V, Patil V, Ramaswamy A, Karpe A, Thorat R, Chaudhari P, Ingle A, Choughule A, Dutt A (2017) Drug-sensitive FGFR3 mutations in lung adenocarcinoma. Ann Oncol 28:597–603PubMedPubMedCentralGoogle Scholar
  20. Chang CH, Hsu WC, Wang CY, Jan ML, Tsai TH, Lee TW, Lynn SG, Yeh CH, Chang TJ (2007) Longitudinal microSPECT/CT imaging and pharmacokinetics of synthetic luteinizing hormone-releasing hormone (LHRH) vaccine in rats. Anticancer Res 27(5A):3251–3258PubMedPubMedCentralGoogle Scholar
  21. Chen X, Park R, Shahinian AH, Tohme M, Khankaldyyan V, Bozorgzadeh MH, Bading JR, Moats R, Laug WE, Conti PS (2004) 18F-labeled RGD peptide: initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol 31(2):179–189PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cheung MC, Maceachern JA, Haynes AE, Meyer RM, Imrie K (2009) 131I-tositumomab in lymphoma. Curr Oncol 16(5):32–47PubMedPubMedCentralGoogle Scholar
  23. Choi W, Park E-Y, Jeon S, Kim C (2018) Clinical photoacoustic imaging platforms. Biomed Eng Lett 8:1–17CrossRefGoogle Scholar
  24. Chrastina A, Valadon P, Massey KA, Schnitzer JE (2010) Lung vascular targeting using antibody to aminopeptidase P: CT-SPECT imaging, biodistribution and pharmacokinetic analysis. J Vasc Res 47(6):531–543PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cohen CM (2003) A path to improved pharmaceutical productivity. Nat Rev Drug Discov 2(9):751–753PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cole LE, Ross RD, Tilley JM, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in x-ray imaging and computed tomography. Nanomedicine 10:321–341PubMedCrossRefPubMedCentralGoogle Scholar
  27. Contessa JN, Bhojani MS, Freeze HH, Ross BD, Rehemtulla A, Lawrence TS (2010) Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy. Clin Cancer Res 16(12):3205–3214PubMedPubMedCentralCrossRefGoogle Scholar
  28. Curtis TE, Roeder RK (2017) Calibration methods influence quantitative material decomposition in photon-counting spectral CT, SPIEGoogle Scholar
  29. Das S, Gurav S, Soni V, Ingle A, Mohanty BS, Chaudhari P, Bendale K, Dholam K, Bellare JR (2018) Osteogenic nanofibrous coated titanium implant results in enhanced osseointegration: in vivo preliminary study in a rabbit model. Tissue Eng Regen Med 15:231–247PubMedPubMedCentralCrossRefGoogle Scholar
  30. Decristoforo C, Faintuch-Linkowski B, Rey A, Von Guggenberg E, Rupprich M, Hernandez-Gonzales I, Rodrigo T, Haubner R (2006) [99mTc]HYNIC-RGD for imaging integrin alphavbeta3 expression. Nucl Med Biol 33(8):945–952PubMedCrossRefPubMedCentralGoogle Scholar
  31. Deshpande N, Ren Y, Foygel K, Rosenberg J, Willmann JK (2010) Longitudinal assessment of expression levels of tumor angiogenic markers with molecular ultrasound imaging. Mol Imaging BiolGoogle Scholar
  32. Diekmann F, Bick U (2007) Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital mammography. Eur Radiol 17:3086–3092PubMedCrossRefPubMedCentralGoogle Scholar
  33. Difilippo FP (2008) Design and performance of a multi-pinhole collimation device for small animal imaging with clinical SPECT and SPECT-CT scanners. Phys Med Biol 53(15):4185–4201PubMedPubMedCentralCrossRefGoogle Scholar
  34. DiMasi JA, Feldman L, Seckler A, Wilson A (2010) Trends in risks associated with new drug development: success rates for investigational drugsGoogle Scholar
  35. DiMasi JA, Grabowski HG, Hansen RW (2016) Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ 47:20–33PubMedCrossRefPubMedCentralGoogle Scholar
  36. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185PubMedCrossRefPubMedCentralGoogle Scholar
  37. Durkee BY, Mudd SR, Roen CN, Clipson L, Newton MA, Weichert JP, Pickhardt PJ, Halberg RB (2008) Reproducibility of tumor volume measurement at MicroCT colonography in living mice. Acad Radiol 15:334–341PubMedPubMedCentralCrossRefGoogle Scholar
  38. Fani M, Psimadas D, Zikos C, Xanthopoulos S, Loudos GK, Bouziotis P, Varvarigou AD (2006) Comparative evaluation of linear and cyclic 99mTc-RGD peptides for targeting of integrins in tumor angiogenesis. Anticancer Res 26:431–434PubMedPubMedCentralGoogle Scholar
  39. Feugier P, Hoof AV, Sebban C, Solal-Celigny P, Bouabdallah R, Fermé C, Christian B, Lepage E, Tilly H, Morschhauser F, Gaulard P, Salles G, Bosly A, Gisselbrecht C, Reyes F, Coiffier B (2005) Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 23:4117–4126PubMedCrossRefPubMedCentralGoogle Scholar
  40. Fischman AJ, Alpert NM, Rubin RH (2002) Pharmacokinetic imaging: a noninvasive method for determining drug distribution and action. Clin Pharmacokinet 41:581–602PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fomchenko EI, Holland EC (2006) Mouse models of brain tumors and their applications in preclinical trials. Clin Cancer Res 12:5288–5297PubMedCrossRefPubMedCentralGoogle Scholar
  42. Foster FS, Hossack J, Adamson SL (2011) Micro-ultrasound for preclinical imaging. Interface focus 1:576–601PubMedPubMedCentralCrossRefGoogle Scholar
  43. Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2(7):566–580PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fushiki H, Kanoh-Azuma T, Katoh M, Kawabata K, Jiang J, Tsuchiya N, Satow A, Tamai Y, Hayakawa Y (2009) Quantification of mouse pulmonary cancer models by microcomputed tomography imaging. Cancer Sci 100:1544–1549PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gabriel M, Muehllechener P, Decristoforo C, Von Guggenberg E, Kendler D, Prommegger R, Profanter C, Moncayo R, Virgolini I (2005) 99mTc-EDDA/HYNIC-Tyr(3)-octreotide for staging and follow-up of patients with neuroendocrine gastro-entero-pancreatic tumors. Q J Nucl Med Mol Imaging 11:3953–3957Google Scholar
  46. Giand N (2018) Whales, scales and moons — July’s best science images. Nature 560:281Google Scholar
  47. Gioux S, Choi HS, Frangioni JV (2010) Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging 9:7290CrossRefGoogle Scholar
  48. Lacan G, Kesner AL, Gangloff A, Zheng L, Czernin J, Melega WP, Silverman DHS (2005) Synthesis of 2-[(2-chloro-2′-[18F]fluoroethyl)amino]-2H-1,3,2-oxazaphosphorinane-2-oxide (18F-fluorocyclophosphamide), a potential tracer for breast tumor prognostic imaging with PET. J Labelled Compd Radiopham 48:635–643CrossRefGoogle Scholar
  49. Graham KC, Wirtzfeld LA, Mackenzie LT, Postenka CO, Groom AC, Macdonald IC, Fenster A, Lacefield JC, Chambers AF (2005) Three-dimensional high-frequency ultrasound imaging for longitudinal evaluation of liver metastases in preclinical models. Cancer Res 65:5231–5237PubMedCrossRefPubMedCentralGoogle Scholar
  50. Grange C, Geninatti-Crich S, Esposito G, Alberti D, Tei L, Bussolati B, Aime S, Camussi G (2010) Combined delivery and magnetic resonance imaging of neural cell adhesion molecule-targeted doxorubicin-containing liposomes in experimentally induced Kaposi’s sarcoma. Cancer Res 70:2180–2190PubMedCrossRefPubMedCentralGoogle Scholar
  51. Guibal A, Taillade L, Mulé S, Comperat E, Badachi Y, Golmard JL, Guillou-Buffello LE, Rixe O, Bridal SL, Lucidarme O (2010) Noninvasive contrast-enhanced US quantitative assessment of tumor microcirculation in a murine model: effect of discontinuing anti-VEGF therapy. Radiology 254:420–429PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hajra KM, Liu JR (2004) Apoptosome dysfunction in human cancer. Apoptosis 9:691–704PubMedCrossRefPubMedCentralGoogle Scholar
  53. Hajra KM, Tan L, Liu JR (2008) Defective apoptosis underlies chemoresistance in ovarian cancer. Adv Exp Med Biol 622:197–208PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hasegawa S, Furukawa T, Saga T (2010) Molecular MR imaging of cancer gene therapy: ferritin transgene reporter takes the stage. Magn Reson Med Sci 9:37–47PubMedCrossRefPubMedCentralGoogle Scholar
  55. Häusler A, Allegrini PR, Biollaz M, Batzl C, Scheidegger E, Bhatnagar AS (1996) CGP 53153: a new potent inhibitor of 5α-reductase. J Steroid Biochem Mol Biol 57:187–195PubMedCrossRefPubMedCentralGoogle Scholar
  56. He C, Hu Y, Yin L, Tang C, Yin C (2010) Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 31:3657–3666PubMedCrossRefPubMedCentralGoogle Scholar
  57. Hendrikse NH, Franssen EJF, Van Der Graaf WTA, Vaalburg W, De Vries EGE (1999) Visualization of multidrug resistance in vivo. Eur J Nucl Med 26:283–293PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hodé Y, Reimold M, Demazières A, Reischl G, Bayle F, Nuss P, Hameg A, Dib M, Macher JP (2005) A positron emission tomography (PET) study of cerebral dopamine D 2 and serotonine 5-HT2A receptor occupancy in patients treated with cyamemazine (Tercian). Psychopharmacology 180:377–384PubMedCrossRefPubMedCentralGoogle Scholar
  59. Hoyt K, Warram JM, Umphrey H, Belt L, Lockhart ME, Robbin ML, Zinn KR (2010) Determination of breast cancer response to bevacizumab therapy using contrast-enhanced ultrasound and artificial neural networks. J Ultrasound Med 29:577–585PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hsueh W-A, Kesner AL, Gangloff A, Pegram MD, Beryt M, Czernin J, Phelps ME, Silverman DHS (2006) Predicting chemotherapy response to paclitaxel with 18F-Fluoropaclitaxel and PET. J Nucl Med 47:1995–1999PubMedPubMedCentralGoogle Scholar
  61. Hu S, Kiesewetter DO, Zhu L, Guo N, Gao H, Liu G, Hida N, Lang L, Niu G, Chen X (2012) Longitudinal PET imaging of doxorubicin-induced cell death with 18F-annexin v. Mol Imaging Biol 14:762–770PubMedPubMedCentralCrossRefGoogle Scholar
  62. Huang G, Yang S, Yuan Y, Xing D (2011) Combining x-ray and photoacoustics for in vivo tumor imaging with gold nanorods. Appl Phys Lett 99:123701CrossRefGoogle Scholar
  63. Huynh AS, Abrahams DF, Torres MS, Baldwin MK, Gillies RJ, Morse DL (2011) Development of an orthotopic human pancreatic cancer xenograft model using ultrasound guided injection of cells. PLoS One 6:e20330PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jadvar H, Colletti P, Delgado-Bolton R, Esposito G, Krause B, Iagaru A, Nadel H, Quinn D, Rohren E, Subramaniam R, Zukotynski K, Kauffman J, Ahuja S, Griffeth LK (2017) Appropriate use criteria for18F-FDG PET/CT in restaging and treatment response assessment of malignant disease. J Nucl Med 58:2026–2037PubMedCrossRefPubMedCentralGoogle Scholar
  65. Jager PL, Plaat BEC, De Vries EGE, Molenaar WM, Vaalburg W, Piers DA, Hoekstra HJ (2000) Imaging of soft-tissue tumors using L-3-[iodine-123]iodo-α-methyl- tyrosine single photon emission computed tomography: comparison with proliferative and mitotic activity, cellularity, and vascularity. Clin Cancer Res 6(6):2252–2259PubMedPubMedCentralGoogle Scholar
  66. Jindal A, Mathur A, Pandey U, Sarma HD, Chaudhari P, Dash A (2014) Development of 68Ga-labeled fatty acids for their potential use in cardiac metabolic imaging. J Labelled Comp Radiopharm 57:463–469PubMedCrossRefPubMedCentralGoogle Scholar
  67. Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84:1424–1431PubMedPubMedCentralCrossRefGoogle Scholar
  68. Jolly C, Jeanny JC, Behar-Cohen F, Laugier P, Saïed A (2005) High-resolution ultrasonography of subretinal structure and assessment of retina degeneration in rat. Exp Eye Res 81:592–601PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jose J, Manohar S, Kolkman RG, Steenbergen W, Van Leeuwen TG (2009) Imaging of tumor vasculature using Twente photoacoustic systems. J Biophotonics 2:701–717PubMedCrossRefPubMedCentralGoogle Scholar
  70. Juhász C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S (2014) Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging 13:1–16CrossRefGoogle Scholar
  71. Jung JH, Choi Y, Im KC (2016) PET/MRI: technical challenges and recent advances. Nucl Med Mol Imaging 50:3–12PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kang BH, Siegelin MD, Plescia J, Raskett CM, Garlick DS, Dohi T, Lian JB, Stein GS, Languino LR, Altieri DC (2010) Preclinical characterization of mitochondria-targeted small molecule Hsp90 inhibitors, gamitrinibs, in advanced prostate cancer. Clin Cancer Res 16:4779–4788PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kartachova M, Haas RLM, Valdés Olmos RA, Hoebers FJP, Van Zandwijk N, Verheij M (2004) In vivo imaging of apoptosis by 99mTc-Annexin V scintigraphy: visual analysis in relation to treatment response. Radiother Oncol 72(3):333–339PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kartachova MS, Valdés Olmos RA, Haas RLM, Hoebers FJP, Van Den Brekel MW, Van Zandwijk N, Herk MV, Verheij M (2006) Mapping of treatment-induced apoptosis in normal structures:99mTc-Hynic-rh-annexin V SPECT and CT image fusion. Eur J Nucl Med Mol Imaging 33:893–899PubMedCrossRefPubMedCentralGoogle Scholar
  75. Katz R (2004) Biomarkers and surrogate markers: an FDA perspective. NeuroRx 1:185–195Google Scholar
  76. Kesner AL, Hsueh WA, Htet NL, Pio BS, Czernin J, Pegram MD, Phelps ME, Silverman DHS (2007) Biodistribution and predictive value of 18F-Fluorocyclophosphamide in mice bearing human breast Cancer xenografts. J Nucl Med 48:2021–2027PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kiesewetter DO, Jagoda EM, Kao CHK, Ma Y, Ravasi L, Shimoji K, Szajek LP, Eckelman WC (2003) Fluoro-, bromo-, and iodopaclitaxel derivatives: synthesis and biological evaluation. Nucl Med Biol 30:11–24PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kim JY, Park H, Lee JC, Kim KM, Lee KC, Ha HJ, Choi TH, An GI, Cheon GJ (2009) A simple cu-64 production and its application of cu-64 ATSM. Appl Radiat Isot 67:1190–1194PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kulkarni SA, Feng S-S (2013) Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30:2512–2522PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kumar P, Singh B, Ghai A, Hazari PP, Mittal BR, Mishra AK (2015) Development of a single vial kit formulation of [99mTc]-labeled doxorubicin for tumor imaging and treatment response assessment-preclinical evaluation and preliminary human results. J Label Compd Radiopharm 58:242–249CrossRefGoogle Scholar
  81. Kurdziel KA, Kiesewetter DO, Carson RE, Eckelman WC, Herscovitch P (2003) Biodistribution, radiation dose estimates, and in vivo Pgp modulation studies of 18F-paclitaxel in nonhuman primates. J Nucl Med 44:1330–1339PubMedPubMedCentralGoogle Scholar
  82. Kuwert T, Probst-Cousin S, Woesler B, Morgenroth C, Lerch H, Matheja P, Palkovic S, Schafers M, Wassmann H, Gullotta F, Schober O (1997) Iodine-123-alpha-methyl tyrosine in gliomas: correlation with cellular density and proliferative activity. J Nucl Med 38:1551–1555PubMedPubMedCentralGoogle Scholar
  83. Lappin G, Garner RC (2003) Big physics, small doses: the use of AMS and PET in human microdosing of development drugs. Nat Rev Drug Discov 2:233–240PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lee KC, Hamstra DA, Bhojani MS, Khan AP, Ross BD, Rehemtulla A (2007) Noninvasive molecular imaging sheds light on the synergy between 5-fluorouracil and TRAIL/Apo2L for cancer therapy. Clin Cancer Res 13:1839–1846PubMedCrossRefPubMedCentralGoogle Scholar
  85. Li L, Zhu L, Ma C, Lin L, Yao J, Wang L, Maslov K, Zhang R, Chen W, Shi J (2017) Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nature Biomed Eng 1:0071CrossRefGoogle Scholar
  86. Liersch T, Meller J, Kulle B, Behr TM, Markus P, Langer C, Ghadimi BM, Wegener WA, Kovacs J, Horak ID, Becker H, Goldenberg DM (2005) Phase II trial of carcinoembryonic antigen radioimmunotherapy with 131I-labetuzumab after salvage resection of colorectal metastases in the liver: five-year safety and efficacy results. J Clin Oncol 23:6763–6770PubMedCrossRefPubMedCentralGoogle Scholar
  87. Liu M, Chen Z, Zabihian B, Sinz C, Zhang E, Beard PC, Ginner L, Hoover E, Minneman MP, Leitgeb RA (2016) Combined multi-modal photoacoustic tomography, optical coherence tomography (OCT) and OCT angiography system with an articulated probe for in vivo human skin structure and vasculature imaging. Biomed Opt Express 7:3390–3402PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205:194–205PubMedCrossRefPubMedCentralGoogle Scholar
  89. Madsen MT (2007) Recent advances in SPECT imaging. J Nucl Med 48:661–673PubMedCrossRefPubMedCentralGoogle Scholar
  90. Mahmoodi N, Motameda N, Paylakhic SH, Mahmoodid NO (2015) Comparing the effect of Silybin and Silybin advanced™ on viability and HER2 expression on the human breast Cancer SKBR3 cell line by no serum starvation. Iran J Pharm Res 14:521–530PubMedPubMedCentralGoogle Scholar
  91. Mallidi S, Watanabe K, Timerman D, Schoenfeld D, Hasan T (2015) Prediction of tumor recurrence and therapy monitoring using ultrasound-guided photoacoustic imaging. Theranostics 5:289PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mandlik SK, Ranpise NS, Mohanty BS, Chaudhari PR (2018) A coupled bimodal SPECT-CT imaging and brain kinetics studies of zolmitriptan-encapsulated nanostructured polymeric carriers. Drug Deliv Transl Res 8:797–805PubMedCrossRefPubMedCentralGoogle Scholar
  93. Mathur A, Sharma AK, Murhekar V, Mallia MB, Pawade S, Sarma H, Chaudhari P, Sachdev S, Banerjee S (2015) Syntheses and biological evaluation of 99m Tc-HYNIC-fatty acid complexes for myocardial imaging. RSC Adv 5:93374–93385CrossRefGoogle Scholar
  94. Mendoza-Sánchez AN, Ferro-Flores G, Ocampo-García BE, Morales-Avila E, Ramírez FDM, De León-Rodríguez LM, Santos-Cuevas CL, Medina LA, Rojas-Calderón EL, Camacho-López MA (2010) Lys3-bombesin conjugated to 99mTc-labelled gold nanoparticles for in vivo gastrin releasing peptide-receptor imaging. J Biomed Nanotechnol 6:375–384PubMedCrossRefPubMedCentralGoogle Scholar
  95. Mercep E, Jeng G, Morscher S, Li P-C, Razansky D (2015) Hybrid optoacoustic tomography and pulse-echo ultrasonography using concave arrays. IEEE Trans Ultrason Ferroelectr Freq Control 62:1651–1661PubMedCrossRefPubMedCentralGoogle Scholar
  96. Miller DH (2002) Measurement of atrophy in multiple sclerosis: pathological basis, methodological aspects and clinical relevance. Brain 125:1676–1695PubMedCrossRefPubMedCentralGoogle Scholar
  97. Minckwitz GV, Procter M, Azambuja ED, Zardavas D, Benyunes M, Viale G, Suter T, Arahmani A, Rouchet N, Clark E, Knott A, Lang I, Levy C, Yardley DA, Bines J, Gelber RD, Piccart M, Baselga J (2017) Adjuvant Pertuzumab and Trastuzumab in early HER2-positive breast Cancer. N Engl J Med 377:122–131CrossRefGoogle Scholar
  98. Mishani E, Abourbeh G, Eiblmaier M, Anderson C (2008) Imaging of EGFR and EGFR tyrosine kinase overexpression in tumors by nuclear medicine modalities. Curr Pharm Des 14:2983–2998PubMedPubMedCentralCrossRefGoogle Scholar
  99. Moghiseh M (2018) Optimization of spectral CT for novel applications of nanoparticles. A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Medical Physics, University of OtagoGoogle Scholar
  100. Moghiseh M, Lowe C, Lewis JG, Kumar D, Butler A, Anderson N, Raja A (2018) Spectral photon-counting molecular imaging for quantification of monoclonal antibody-conjugated gold nanoparticles targeted to lymphoma and breast cancer: an in vitro study. Contrast Media Mol Imaging 2018:2136840PubMedPubMedCentralCrossRefGoogle Scholar
  101. Morgan TM, Pitts TEM, Gross TS, Poliachik SL, Vessella RL, Corey E (2008) RAD001 (Everolimus) inhibits growth of prostate cancer in the bone and the inhibitory effects are increased by combination with docetaxel and zoledronic acid. Prostate 68:861–871PubMedPubMedCentralCrossRefGoogle Scholar
  102. Moros M, Hernaez B, Garet E, Dias JT, Saez B, Grazu V, Ndez AGL-F, Alonso C, Fuente JMDL (2012) Monosaccharides versus PEG-functionalized NPs influence in the cellular uptake. ACS Nano 6:1565–1577PubMedCrossRefPubMedCentralGoogle Scholar
  103. Moseley CK, Carlin SM, Neelamegam R, Hooker JM (2012) An efficient and practical radiosynthesis of [11C]temozolomide. Org Lett 14:5872–5875PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mouchess ML, Sohara Y, Nelson MD, Declerck YA, Moats RA (2006) Multimodal imaging analysis of tumor progression and bone resorption in a murine cancer model. J Comput Assist Tomogr 30:525–534PubMedCrossRefPubMedCentralGoogle Scholar
  105. Needles A, Heinmiller A, Sun J, Theodoropoulos C, Bates D, Hirson D, Yin M, Foster FS (2013) Development and initial application of a fully integrated photoacoustic micro-ultrasound system. IEEE Trans Ultrason Ferroelectr Freq Control 60:888–897PubMedCrossRefPubMedCentralGoogle Scholar
  106. Niederhauser JJ (2004) Real-time biomedical optoacoustic imaging. ETH ZurichGoogle Scholar
  107. Niu G, Sun X, Cao Q, Courter D, Koong A, Le QT, Gambhir SS, Chen X (2010) Cetuximab-based immunotherapy and radioimmunotherapy of head and neck squamous cell carcinoma. Clin Cancer Res 16:2095–2105PubMedPubMedCentralCrossRefGoogle Scholar
  108. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603PubMedCrossRefPubMedCentralGoogle Scholar
  109. O’connor JPB, Jackson A, Parker GJM, Jayson GC (2007) DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. British J Cancer 96:189–195CrossRefGoogle Scholar
  110. O’connor, M. K. & Kemp, B. J. 2006. Single-photon emission computed tomography/computed tomography: basic instrumentation and innovationsGoogle Scholar
  111. Ohta S, Lai EW, Morris JC, Bakan DA, Klaunberg B, Cleary S, Powers JF, Tischler AS, Abu-Asab M, Schimel D, Pacak K (2006) MicroCT for high-resolution imaging of ectopic pheochromocytoma tumors in the liver of nude mice. Int J Cancer 9:2236–2241CrossRefGoogle Scholar
  112. Panta R, Bell ST, Healy J, Aamir R, Bateman C, Moghiseh M, Butler A, ANDERSON N (2018) Element-specific spectral imaging of multiple contrast agents: a phantom study. J Instrum 13:T02001CrossRefGoogle Scholar
  113. Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12(1–2):54–61PubMedCrossRefPubMedCentralGoogle Scholar
  114. Peck M, Pollack HA, Friesen A, Muzi M, Shoner SC, Shankland EG, Fink JR, Armstrong JO, Link JM, Krohn KA (2015) Applications of PET imaging with the proliferation marker [18F]-FLT. Q J Nucl Med Mol Imaging 59:95–104PubMedPubMedCentralGoogle Scholar
  115. Pigula M, Huang HC, Mallidi S, Anbil S, Liu J, Mai Z, Hasan T (2018) Size-dependent tumor response to photodynamic therapy and irinotecan monotherapies revealed by longitudinal ultrasound monitoring in an Orthotopic pancreatic Cancer model. Photochem Photobiol 95:378–386PubMedCrossRefPubMedCentralGoogle Scholar
  116. Piscaglia F, Bolondi L (2006 Sep) The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations. Ultrasound Med Biol 32(9):1369–1375CrossRefGoogle Scholar
  117. Pochon S, Tardy I, Bussat P, Bettinger T, Brochot J, von Wronski M, Passantino L, Schneider M (2010) BR55: a Lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Investig Radiol 45(2):89–95PubMedCrossRefPubMedCentralGoogle Scholar
  118. Prabhu S, Goda JS, Mutalik S, Mohanty BS, Chaudhari P, Rai S, Udupa N, RAO BSS (2017) A polymeric temozolomide nanocomposite against orthotopic glioblastoma xenograft: tumor-specific homing directed by nestin. Nanoscale 9:10919–10932PubMedCrossRefPubMedCentralGoogle Scholar
  119. Prajapati SI, Keller C (2011) Contrast enhanced vessel imaging using MicroCT. J Vis Exp 47:2377Google Scholar
  120. Pysz MA, Willmann JK (2011) Targeted contrast-enhanced ultrasound: an emerging Technology in Abdominal and Pelvic Imaging. Gastroenterology 140(3):785–790.e6CrossRefGoogle Scholar
  121. Pysz MA, Foygel K, Rosenberg J, Gambhir SS, Schneider M, Willmann JK (2010) Antiangiogenic Cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55). Radiology 256:519–527PubMedPubMedCentralCrossRefGoogle Scholar
  122. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. Royal Soc Chem 19:6274–6293Google Scholar
  123. Rao PS, Thakur ML, Pallela V, Patti R, Reddy K, Li H, Sharma S, Pham HL, Diggles L, Minami C, Marcus CS (2001) 99mTc labeled VIP analog: evaluation for imaging colorectal cancer. Nucl Med Biol 28:445–450PubMedCrossRefPubMedCentralGoogle Scholar
  124. Reddy N, Hernandez-Ilizaliturri FJ, Deeb G, Roth M, Vaughn M, Knight J, WALLACE P, CZUCZMAN MS (2008) Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br J Haematol 140:36–45PubMedPubMedCentralGoogle Scholar
  125. Rice SL, Roney CA, Daumar P, Lewis JS (2011) The next generation of positron emission tomography radiopharmaceuticals in oncology. Semin Nucl Med 41(4):265–282PubMedPubMedCentralCrossRefGoogle Scholar
  126. Rodrigues M, Traub-Weidinger T, Li S, Ibi B, Virgolini I (2006) Comparison of 111In-DOTA-DPhe1-Tyr 3-octreotide and 111In-DOTA-lanreotide scintigraphy and dosimetry in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 33:532–540PubMedCrossRefPubMedCentralGoogle Scholar
  127. Ronaldson J, Butler A, Anderson N, Zainon R, Butler P. (2011) The performance of MARS-CT using Medipix3 for spectral imaging of soft-tissue. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, 2011. IEEE, pp 4002–4008Google Scholar
  128. Rudin M (2007) Imaging readouts as biomarkers or surrogate parameters for the assessment of therapeutic interventions. Eur Radiol 17:2441–2457PubMedCrossRefPubMedCentralGoogle Scholar
  129. Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2(2):123–131PubMedCrossRefPubMedCentralGoogle Scholar
  130. Saleem A, Harte RJ, Matthews JC, Osman S, Brady F, Luthra SK, Brown GD, Bleehen N, Connors T, Jones T, Price PM, Aboagye EO (2001) Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography. J Clin Oncol 19:1421–1429PubMedCrossRefPubMedCentralGoogle Scholar
  131. Schambach SJ, Bag S, Schilling L, Groden C, Brockmann MA (2010) Application of micro-CT in small animal imaging. Methods 50:2–13PubMedCrossRefPubMedCentralGoogle Scholar
  132. Scheepbouwer C, Meyer S, Burggraaf MJ, Jose J, Molthoff CF (2016) A multimodal imaging approach for longitudinal evaluation of bladder tumor development in an orthotopic murine model. PLoS One 11:e0161284PubMedPubMedCentralCrossRefGoogle Scholar
  133. Schröder L, Lowery TJ, Hilty C, Wemmer DE, Pines A (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 20:446–469CrossRefGoogle Scholar
  134. Schroeder R-J, Bostanjoglo M, Rademaker J, Maeurer J, Felix R (2003) Role of power Doppler techniques and ultrasound contrast enhancement in the differential diagnosis of focal breast lesions. Eur Radiol 13:68–79PubMedCrossRefPubMedCentralGoogle Scholar
  135. Seimbille Y, Phelps ME, Czernin J, Silverman DHS (2005) Fluorine-18 labeling of 6,7-disubstituted anilinoquinazoline derivatives for positron emission tomography (PET) imaging of tyrosine kinase receptors: synthesis of18F-Iressa and related molecular probes. J Label Compd Radiopharm 61:42–53Google Scholar
  136. Shariati F, Aryana K, Fattahi A, Forghani MN, Azarian A, Zakavi SR, Sadeghi R, Ayati N, Sadri K (2014) Diagnostic value of 99mTc-bombesin scintigraphy for differentiation of malignant from benign breast lesions. Nucl Med Commun 35:620–625PubMedCrossRefPubMedCentralGoogle Scholar
  137. Slomka PJ, Pan T, Germano G (2016) Recent advances and future Progress in PET instrumentation. Semin Nucl Med 46:5–19PubMedCrossRefPubMedCentralGoogle Scholar
  138. Stoffels I, Morscher S, Helfrich I, Hillen U, Leyh J, Burton NC, Sardella TC, Claussen J, Poeppel TD, Bachmann HS (2015) Metastatic status of sentinel lymph nodes in melanoma determined noninvasively with multispectral optoacoustic imaging. Sci Transl Med 7:317ra199-317ra199CrossRefGoogle Scholar
  139. Tarkin JM, Dweck MR, Rudd JHF (2018) Imaging as a surrogate marker of drug efficacy in cardiovascular disease. Heart 105:567–578PubMedPubMedCentralCrossRefGoogle Scholar
  140. Thummuri D, Naidu VGM, Chaudhari P (2017) Carnosic acid attenuates RANKL-induced oxidative stress and osteoclastogenesis via induction of Nrf2 and suppression of NF-kappaB and MAPK signalling. J Mol Med (Berl) 95:1065–1076CrossRefGoogle Scholar
  141. Toumia Y, Cerroni B, Trochet P, Lacerenza S, Oddo L, Domenici F, Paradossi G (2018) Performances of a pristine graphene–microbubble hybrid construct as dual imaging contrast agent and assessment of its biodistribution by photoacoustic imaging. Part Part Syst Charact 37:1800066CrossRefGoogle Scholar
  142. Tuncbilek N, Kaplan M, Altaner S, Atakan IH, Süt N, Inci O, Demir MK (2009) Value of dynamic contrast-enhanced MRI and correlation with tumor angiogenesis in bladder cancer. Am J Roentgenol 192:949–955CrossRefGoogle Scholar
  143. Valtorta S, Belloli S, Sanvito F, Masiello V, Di Grigoli G, Monterisi C, Fazio F, Picchio M, Moresco RM (2013) Comparison of 18F-Fluoroazomycin-Arabinofuranoside and 64Cu-diacetyl-Bis(N4-Methylthiosemicarbazone) in preclinical models of Cancer. J Nucl Med 54:1106–1112PubMedCrossRefPubMedCentralGoogle Scholar
  144. Van De Wiele C, Oltenfreiter R, De Winter O, Signore A, Slegers G, Dierckx R (2002) Tumour angiogenesis pathways: related clinical issues and implications for nuclear medicine imaging. Eur J Nucl Med 29:699–710CrossRefGoogle Scholar
  145. Van Den Abbeele AD, Badawi RD (2002) Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). Eur J Cancer 38:S60–S65PubMedCrossRefPubMedCentralGoogle Scholar
  146. Vaneycken I, Govaert J, Vincke C, Caveliers V, Lahoutte T, De Baetselier P, Raes G, Bossuyt A, Muyldermans S, Devoogdt N (2010) In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/Micro-CT. J Nucl Med 51:1099–1106PubMedCrossRefPubMedCentralGoogle Scholar
  147. Vergez S, Delord JP, Thomas F, Rochaix P, Caselles O, Filleron T, Brillouet S, Canal P, Courbon F, Allal BC (2010) Preclinical and clinical evidence that deoxy-2-[18F]fluoro-D- glucose positron emission tomography with computed tomography is a reliable tool for the detection of early molecular responses to erlotinib in head and neck cancer. Clin Cancer Res 16:4434–4445PubMedCrossRefPubMedCentralGoogle Scholar
  148. Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L, Slamon DJ, Murphy M, Novotny WF, Burchmore M, Shak S, Stewart SJ, Press M (2002) Efficacy and safety of Trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast Cancer. Clin Oncol 20:719–729CrossRefGoogle Scholar
  149. Wagner N, Eldar YC, Friedman Z (2012) Compressed beamforming in ultrasound imaging. IEEE Trans Signal Process 60:4643–4657CrossRefGoogle Scholar
  150. Walter MA, Hildebrandt IJ, Hacke K, Kesner AL, Kelly O, Lawson GW, Phelps ME, Czernin J, Weber WA, Schiestl RH (2010) Small-animal PET/CT for monitoring the development and response to chemotherapy of thymic lymphoma in Trp53-/- mice. J Nucl Med 51:1285–1292PubMedCrossRefPubMedCentralGoogle Scholar
  151. Wang LV, Yao J (2016) A practical guide to photoacoustic tomography in the life sciences. Nat Methods 13:627PubMedPubMedCentralCrossRefGoogle Scholar
  152. Weber J, Beard PC, Bohndiek SE (2016) Contrast agents for molecular photoacoustic imaging. Nat Methods 13:639PubMedCrossRefPubMedCentralGoogle Scholar
  153. Willmann JK, Van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–606PubMedCrossRefPubMedCentralGoogle Scholar
  154. Wu P, Zhang Y, Sun Y, Shi X, Li F, Zhu Z (2013) Clinical applications of 18F-FDG PET/CT in monitoring anti-cancer therapies. Curr Pharm Biotechnol 14(7):658–668Google Scholar
  155. Xu M, Wang LV (2006) Photoacoustic imaging in biomedicine rev. Sci Instrum 77:041101CrossRefGoogle Scholar
  156. Xu Z, Li XF, Zou H, Sun X, Shen B (2017)18F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget 8:94969–94979PubMedPubMedCentralGoogle Scholar
  157. Xuan JW, Bygrave M, Jiang H, Valiyeva F, Dunmore-Buyze J, Holdsworth DW, Izawa JI, Bauman G, Moussa M, Winter SF, Greenberg NM, Chin JL, Drangova M, Fenster A, Lacefield JC (2007) Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power doppler ultrasound. Cancer Res 67:2830–2839PubMedCrossRefPubMedCentralGoogle Scholar
  158. Yang J, Guo H, Gallazzi F, Berwick M, Padilla RS, Miao Y (2009) Evaluation of a novel Arg-Gly-Asp-conjugated α-melanocyte stimulating hormone hybrid peptide for potential melanoma therapy. Bioconjug Chem 19:1634–1642CrossRefGoogle Scholar
  159. Zeng Q, Yang Z, Gao YJ, Yuan H, Cui K, Shi Y, Wang H, Huang X, Wong STC, Wang Y, Kesari S, Ji RR, Xu X (2010) Treating triple-negative breast cancer by a combination of rapamycin and cyclophosphamide: An in vivo bioluminescence imaging study. Eur J Cancer 46:1132–1143PubMedCrossRefPubMedCentralGoogle Scholar
  160. Zhu G, Li H, Zhang Y, Li Y, Liang S, Liu J (2011) Concomitant pulmonary and thyroid tumors identified by FDG PET/CT and immunohistochemical techniques. World J Surg Oncol 9(1):119PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pardeep Kumar
    • 1
  • Baljinder Singh
    • 2
  • Pradip Chaudhari
    • 3
  • Jithin Jose
    • 4
  • Anthony Butler
    • 5
    • 6
    • 7
    • 8
    • 9
  • Hannah Prebble
    • 5
    • 6
  • Mahdieh Moghiseh
    • 5
    • 7
  • The MARS Collaboration
    • 5
  1. 1.Department of Neuroimaging and Interventional RadiologyNational Institute of Mental Health & Neuro SciencesBengaluruIndia
  2. 2.Department of Nuclear MedicinePGIMERChandigarhIndia
  3. 3.Comparative Oncology Program and Small Animal Imaging FacilityAdvanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National InstituteNavi MumbaiIndia
  4. 4.Translation Research ProgramFUJIFILM Visualsonics, Inc.AmsterdamThe Netherlands
  5. 5.MARS Bioimaging LimitedChristchurchNew Zealand
  6. 6.University of CanterburyChristchurchNew Zealand
  7. 7.University of Otago ChristchurchChristchurchNew Zealand
  8. 8.European Organization for Nuclear Research (CERN)GenevaSwitzerland
  9. 9.Human Interface Technology Laboratory New Zealand (HITLabNZ)University of CanterburyChristchurchNew Zealand

Personalised recommendations