Advertisement

Analysing Cancer Signalling Pathways: A Structural Bioinformatics Approach

  • Jitesh Doshi
  • Shubhankar Dutta
  • Kakoli BoseEmail author
Chapter

Abstract

Regulation of cancer and its development is a complex process that combines an aggregation of numerous mutations with dynamic changes and a complicated cross-talk among various types of cells involved in tumours. Poor understanding of the underlying cellular mechanisms involving various biological molecules associated with cancer has resulted in confusing prognosis. Thus, interpretation of relationships between these biological molecules, networks and pathways is necessary to understand the intricacies of cancer biology. Emergence of a specialised branch of biology, namely, bioinformatics, has enabled cancer biologists to bridge the gap between genomics and proteomics. One of its subdomains is structural bioinformatics, which includes techniques such as molecular modelling, high-throughput docking, mutation analysis, network modelling and drug designing. Robustness of the algorithms and pipelines involving these techniques has made efficient handling of heterogeneous and ever-evolving tumour data possible. In this chapter, we have tried to elucidate the application of structural bioinformatics in the analysis of cancer signalling pathways.

Keywords

Structural bioinformatics Cancer Protein structure Protein-protein interactions Interactome Mutation Network modelling Network analysis Signalling pathways Cancer signalling Tumour biology Pathway visualisation 

References

  1. Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC et al (2010) An integrated approach to uncover drivers of cancer. Cell 143(6):1005–1017PubMedPubMedCentralCrossRefGoogle Scholar
  2. Altshuler DL, Durbin RM, Abecasis GR, Bentley DR, Chakravarti A, Clark AG et al (2010) A map of human genome variation from population-scale sequencing. Nature 467(7319):1061–1073PubMedCrossRefGoogle Scholar
  3. Arnold K, Bordoli L, Kopp J, Schwede T (2006 Jan) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201PubMedCrossRefGoogle Scholar
  4. Baasiri RA, Glasser SR, Steffen DL, Wheeler DA (1999) The breast cancer gene database: a collaborative information resource. Oncogene 18:7958PubMedCrossRefGoogle Scholar
  5. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101PubMedCrossRefGoogle Scholar
  6. Bejugam PR, Kuppili RR, Singh N, Gadewal N, Chaganti LK, Sastry GM et al (2013) Allosteric regulation of serine protease HtrA2 through novel non-canonical substrate binding pocket. Srinivasula SM, editor. PLoS One [Internet] 8(2):e55416.  https://doi.org/10.1371/journal.pone.0055416CrossRefGoogle Scholar
  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H et al (2000 Jan) The protein data bank. Nucleic Acids Res 28(1):235–242PubMedPubMedCentralCrossRefGoogle Scholar
  8. Béroud C, Soussi T (1998) p53 gene mutation: software and database. Nucleic Acids Res 26(1):200–204PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bonnet E, Tatari M, Joshi A, Michoel T, Marchal K, Berx G et al (2010) Module network inference from a cancer gene expression data set identifies MicroRNA regulated modules. PLoS One 5(4):e10162PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bourne PE, Weissig H (2003) Structural bioinformatics. Wiley-Liss, Hoboken, 649 pCrossRefGoogle Scholar
  11. Buscà R, Pouysségur J, Lenormand P (2016) ERK1 and ERK2 map kinases: specific roles or functional redundancy? Front Cell Dev Biol 4:53PubMedPubMedCentralCrossRefGoogle Scholar
  12. Carter H, Chen S, Isik L, Tyekucheva S, Velculescu VE, Kinzler KW et al (2009) Cancer-specific high-throughput annotation of somatic mutations: computational prediction of driver missense mutations. Cancer Res 69:6660PubMedPubMedCentralCrossRefGoogle Scholar
  13. Caspi R, Billington R, Ferrer L, Foerster H, Fulcher CA, Keseler IM et al (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 42:D459–D471CrossRefGoogle Scholar
  14. Chandrasekaran G, Hwang EC, Kang TW, Kwon DD, Park K, Lee J-J et al (2017 Dec) Computational modeling of complete HOXB13 protein for predicting the functional effect of SNPs and the associated role in hereditary prostate cancer. Sci Rep 7(1):43830PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cheung KH, Osier MV, Kidd JR, Pakstis AJ, Miller PL, Kidd KK (2000) ALFRED: an allele frequency database for diverse populations and DNA polymorphisms. Nucleic Acids Res 28:361PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ciriello G, Cerami E, Aksoy BA, Sander C, Schultz N (2013) Using MEMo to discover mutual exclusivity modules in cancer. Curr Protoc Bioinforma 41(1):8.17.1–8.17.12CrossRefGoogle Scholar
  17. Dees ND, Zhang Q, Kandoth C, Wendl MC, Schierding W, Koboldt DC et al (2012) MuSiC: identifying mutational significance in cancer genomes. Genome Res 22(8):1589–1598PubMedPubMedCentralCrossRefGoogle Scholar
  18. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935–942PubMedPubMedCentralCrossRefGoogle Scholar
  19. Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, Shen M et al (2006 Sep) Comparative protein structure modeling using modeller. Curr Protoc Bioinforma 15(1):5.6.1–5.6.30CrossRefGoogle Scholar
  20. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P et al (2018) The reactome pathway knowledgebase. Nucleic Acids Res 44:D481–D487CrossRefGoogle Scholar
  21. Finch AR, Caunt CJ, Perrett RM, Tsaneva-Atanasova K, McArdle CA (2012) Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases. Cell Signal 24:1002PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fu LJ, Wang B (2013) Investigation of the hub genes and related mechanism in ovarian cancer via bioinformatics analysis. J Ovarian Res 6:92PubMedPubMedCentralCrossRefGoogle Scholar
  23. Giannelli F, Green PM, Sommer SS, Poon MC, Ludwig M, Schwaab R et al (1998) Haemophilia B: database of point mutations and short additions and deletions – eighth edition. Nucleic Acids Res 26:265PubMedPubMedCentralCrossRefGoogle Scholar
  24. Gómez J, García LJ, Salazar GA, Villaveces J, Gore S, García A et al (2013) BioJS: an open source JavaScript framework for biological data visualization. Bioinformatics 29(8):1103–1104PubMedPubMedCentralCrossRefGoogle Scholar
  25. González-Pérez A, López-Bigas N (2011) Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet 88:440PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gonzalez-Perez A, Mustonen V, Reva B, Ritchie GRS, Creixell P, Karchin R et al (2013) Computational approaches to identify functional genetic variants in cancer genomes. Nat Methods 10(8):723–729PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hamosh A, Scott AF, Amberger J, Valle D, McKusick VA (2000) Online Mendelian Inheritance in Man (OMIM). Hum Mutat 15:57PubMedCrossRefGoogle Scholar
  28. Huang YJ, Hang D, Lu LJ, Tong L, Gerstein MB, Montelione GT (2008 Oct) Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 7(10):2048–2060PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524PubMedCrossRefGoogle Scholar
  30. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565PubMedPubMedCentralCrossRefGoogle Scholar
  31. Imai K, Mitaku S (2005) Mechanisms of secondary structure breakers in soluble proteins. Biophysics (Oxf) 1:55–65CrossRefGoogle Scholar
  32. Isberg V, Mordalski S, Munk C, Rataj K, Harpsøe K, Hauser AS et al (2016) GPCRdb: an information system for G protein-coupled receptors. Nucleic Acids Res 26(1):277–281Google Scholar
  33. Isserlin R, El-Badrawi RA, Badery GD (2011) The biomolecular interaction network database in PSI-MI 2.5. Database 2011:baq037PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ivanov AA, Khuri FR, Fu H (2013) Targeting protein-protein interactions as an anticancer strategy. Trends Pharmacol Sci 34(7):393–400PubMedPubMedCentralCrossRefGoogle Scholar
  35. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J et al (2009) STRING 8 – a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37:D412PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jiang Y, Xu C (2009) Evaluation model for breast cancer susceptibly gene and its implementation using cytoscape. In: Proceedings of the 2009 2nd international conference on Biomedical Engineering and Informatics, BMEI 2009, 1–5 pGoogle Scholar
  37. Kalari S, Pfeifer GP (2010) Identification of driver and passenger DNA methylation in Cancer by epigenomic analysis. Adv Genet 70:277PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44:D457–D462PubMedCrossRefGoogle Scholar
  39. Kann MG (2007 Jun) Protein interactions and disease: computational approaches to uncover the etiology of diseases. Brief Bioinform 8(5):333–346PubMedCrossRefPubMedCentralGoogle Scholar
  40. Kar G, Gursoy A, Keskin O (2009 Dec) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5(12):e1000601PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kawabata T, Ota M, Nishikawa K (1999) The protein mutant database. Nucleic Acids Res 35:D690–D695Google Scholar
  42. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015 May) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858PubMedPubMedCentralCrossRefGoogle Scholar
  43. Keskin O, Gursoy A, Ma B, Nussinov R (2008) Principles of protein-protein interactions: what are the preferred ways for proteins to interact? Chem Rev 108:1225–1244PubMedCrossRefGoogle Scholar
  44. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32(Web Server):W526–W531PubMedPubMedCentralCrossRefGoogle Scholar
  45. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER et al (2009) VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25(17):2283–2285PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kono N, Arakawa K, Tomita M (2006) MEGU: pathway mapping web-service based on KEGG and SVG. In Silico Biol 6(6):621–625PubMedGoogle Scholar
  47. Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214PubMedPubMedCentralCrossRefGoogle Scholar
  49. Leung A, Bader GD, Reimand J (2014) HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics 30(15):2230–2232PubMedPubMedCentralCrossRefGoogle Scholar
  50. Levinthal C, Wodak SJ, Kahn P, Dadivanian AK (1975 Apr) Hemoglobin interaction in sickle cell fibers. I: theoretical approaches to the molecular contacts. Proc Natl Acad Sci U S A 72(4):1330–1334PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF (2008) The CellML model repository. Bioinformatics 24(18):2122–2123PubMedCrossRefGoogle Scholar
  52. Luo W, Brouwer C (2013) Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 29(14):1830–1831PubMedPubMedCentralCrossRefGoogle Scholar
  53. Martin A, Ochagavia ME, Rabasa LC, Miranda J, Fernandez-de-Cossio J, Bringas R (2010) BisoGenet: a new tool for gene network building, visualization and analysis. BMC Bioinformatics 11(1):91PubMedPubMedCentralCrossRefGoogle Scholar
  54. Miosge LA, Field MA, Sontani Y, Cho V, Johnson S, Palkova A et al (2015) Comparison of predicted and actual consequences of missense mutations. Proc Natl Acad Sci 112(37):E5189–E5198PubMedCrossRefGoogle Scholar
  55. Mitra K, Carvunis AR, Ramesh SK, Ideker T (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14(10):719–732PubMedPubMedCentralCrossRefGoogle Scholar
  56. Modell SM, Lehmann MH (2006) The long QT syndrome family of cardiac ion channelopathies: a HuGE review. Genet Med 8:143PubMedCrossRefGoogle Scholar
  57. Montojo J, Zuberi K, Rodriguez H, Bader GD, Morris Q (2014) GeneMANIA: Fast gene network construction and function prediction for Cytoscape. F1000Research 3:153PubMedPubMedCentralCrossRefGoogle Scholar
  58. Moult J, Pedersen JT, Judson R, Fidelis K (1995) A large-scale experiment to assess protein structure prediction methods. Proteins Struct Funct Genet 23(3):ii–ivPubMedCrossRefGoogle Scholar
  59. Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A (2018 Mar) Critical assessment of methods of protein structure prediction (CASP)—round XII. Proteins Struct Funct Bioinforma 86:7–15CrossRefGoogle Scholar
  60. Mushegian AR (2007) How many protein families are there? Found Comp Genomics:139–150Google Scholar
  61. Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812–3814PubMedPubMedCentralCrossRefGoogle Scholar
  62. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J et al (2011) Using graph theory to analyze biological networks. BioData Mining 4(1):1–27CrossRefGoogle Scholar
  63. Pe’er D, Regev A, Elidan G, Friedman N (2001) Inferring subnetworks from perturbed expression profiles. Bioinformatics 17(1):S215–S224PubMedCrossRefGoogle Scholar
  64. Petrey D, Honig B (2014) Structural bioinformatics of the interactome. Annu Rev Biophys 43:193–210PubMedPubMedCentralCrossRefGoogle Scholar
  65. Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30(12):1771–1773PubMedPubMedCentralCrossRefGoogle Scholar
  66. Platzer KEB, Momany FA, Scheraga HA (1972) Conformational energy calculations of enzyme-substrate interactions. II. Computation of the binding energy for substrates in the active site of α-chymotrypsin. Int J Pept Protein Res 4(3):201–219PubMedCrossRefGoogle Scholar
  67. Pon JR, Marra MA (2015) Driver and passenger mutations in cancer. Annu Rev Pathol Mech Dis 10(1):25–50CrossRefGoogle Scholar
  68. Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, Stein LD, Marth G et al (2001) A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409(6822):928–933PubMedCrossRefGoogle Scholar
  69. Sanchez-Vega F, Mina M, Armenia J, Chatila WK, Luna A, La KC et al (2018) Oncogenic signaling pathways in the cancer genome atlas. Cell 173(2):321–337.e10PubMedPubMedCentralCrossRefGoogle Scholar
  70. Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764PubMedCrossRefGoogle Scholar
  71. Schwarz JM, Rödelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Method 7(8):575–576CrossRefGoogle Scholar
  72. Sever R, Brugge JS (2015) Signal transduction in cancer. Cold Spring Harb Perspect Med 5(4)PubMedPubMedCentralCrossRefGoogle Scholar
  73. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software Environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504PubMedPubMedCentralCrossRefGoogle Scholar
  74. Sheinerman FB, Norel R, Honig B (2000) Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol 10:153PubMedCrossRefGoogle Scholar
  75. Slabinski L, Jaroszewski L, Rodrigues APC, Rychlewski L, Wilson IA, Lesley SA et al (2007) The challenge of protein structure determination-lessons from structural genomics. Protein Sci 16(11):2472–2482PubMedPubMedCentralCrossRefGoogle Scholar
  76. Slenter DN, Kutmon M, Hanspers K, Riutta A, Windsor J, Nunes N et al (2018) WikiPathways: a multifaceted pathway database bridging metabolomics to other omics research. Nucleic Acids Res 46:D661–D667PubMedCrossRefGoogle Scholar
  77. Smigielski EM (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res 28(1):352–355PubMedPubMedCentralCrossRefGoogle Scholar
  78. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Cooper DN et al (2009) The human gene mutation database: 2008 update. Genome Med 1:13PubMedPubMedCentralCrossRefGoogle Scholar
  79. Tabangin ME, Woo JG, Martin LJ (2009) The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc 3(S7):S41PubMedPubMedCentralCrossRefGoogle Scholar
  80. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R et al (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13:2129–2141PubMedPubMedCentralCrossRefGoogle Scholar
  81. Torchala M, Moal IH, Chaleil RAG, Fernandez-Recio J, Bates PA (2013 Mar) SwarmDock: a server for flexible protein–protein docking. Bioinformatics 29(6):807–809PubMedCrossRefGoogle Scholar
  82. Torti D, Trusolino L (2011) Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 3:623PubMedPubMedCentralCrossRefGoogle Scholar
  83. Vakser IA (2014) Protein-protein docking: from interaction to interactome. Biophys J Biophys Soc 107:1785–1793CrossRefGoogle Scholar
  84. Vallat B, Madrid-Aliste C, Fiser A (2015) Modularity of protein folds as a tool for template-free modeling of structures. Marti-Renom MA, editor. PLOS Comput Biol 11(8):e1004419PubMedPubMedCentralCrossRefGoogle Scholar
  85. van Baal S, Kaimakis P, Phommarinh M, Koumbi D, Cuppens H, Riccardino F et al (2007) FINDbase: a relational database recording frequencies of genetic defects leading to inherited disorders worldwide. Nucleic Acids ResGoogle Scholar
  86. Varret M, Rabés JP, Thiart R, Kotze MJ, Baron H, Cenarro A et al (1998) LDLR database (second edition): new additions to the database and the software, and results of the first molecular analysis. Nucleic Acids Res 26:248PubMedPubMedCentralCrossRefGoogle Scholar
  87. Wang Z-X (1996 Oct) How many fold types of protein are there in nature? Proteins Struct Funct Genet 26(2):186–191PubMedCrossRefGoogle Scholar
  88. Wang X, Gulbahce N, Yu H (2011a) Network-based methods for human disease gene prediction. Brief Funct Genomics 10(5):280–293PubMedCrossRefGoogle Scholar
  89. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S et al (2011b) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 43:1219PubMedCrossRefGoogle Scholar
  90. Wass MN, Sternberg MJM (2008) ConFunc – functional annotation in the twilight zone. Bioinformatics 24(6):798–806PubMedCrossRefGoogle Scholar
  91. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015 Jan) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7–8PubMedPubMedCentralCrossRefGoogle Scholar
  92. Zhang X, Wang Y, Wang J, Sun F, Wang J, Wang J et al (2016) Protein-protein interactions among signaling pathways may become new therapeutic targets in liver cancer (review). Oncol Rep 35(2):625–638PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Integrated Biophysics and Structural Biology Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial CentreHomi Bhabha National InstituteNavi MumbaiIndia

Personalised recommendations