Advertisement

Advances in Bio-based Polymer Membranes for CO2 Separation

  • Babul Prasad
  • Rajashree Borgohain
  • Bishnupada MandalEmail author
Chapter
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

The carbon dioxide (CO2) is the chief greenhouse gas accountable for global warming problems across the world. Various technologies are available for CO2 separation like absorption, adsorption, cryogenic distillation, etc., but membrane technology is preferred due to energy efficiency, cost-effective, corrosion-free, and compact modular design. The polymer membranes that are utilized to separate CO2 can either be derived from bio-based polymer or petroleum-based polymer. Bio-based polymers have advantages over petroleum-based as it uses renewable feedstock, less toxic, less carbon emission. The bio-based polymers used to synthesize CO2 selective membrane are chitosan (CS), cellulose, poly (lactic acid) (PLA), etc. Among them, CS is the thermally stable advance biopolymer and possesses good film forming ability. The CO2 separation that occurs in polymer membranes is based on either solution-diffusion or facilitated transport mechanism. Various attempts have been made to improve the CO2 permeance through CS membranes by incorporation of carriers, blending with other polymers or synthesizing mixed matrix membrane (MMM). The polymer membrane used to separate flue gas should be temperature, pressure, and moisture stable, and its performance should not deteriorate with time. Apart from these parameters, various other factors like sorption of gas molecules, gas flow rate, structural changes of the polymers, pH, the active layer thickness, etc. are also important. This chapter gives an overview of CO2 capture technologies, factor affecting the CO2 permeance along with CO2 separation using biopolymer via solution diffusion and facilitated transport mechanism.

Keywords

Bio-based polymer membrane Facilitated transport CO2 separation Flue gas separation 

References

  1. 1.
    Carapellucci R, Milazzo A (2003) Membrane systems for CO2 capture and their integration with gas turbine plants. Proc Inst Mech Eng Part A J Power Energy 217:505–517.  https://doi.org/10.1243/095765003322407557CrossRefGoogle Scholar
  2. 2.
    Yang H, Xu Z, Fan M et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27.  https://doi.org/10.1016/S1001-0742(08)60002-9CrossRefGoogle Scholar
  3. 3.
    Wang S, Li X, Wu H et al (2016) Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ Sci 9:1863–1890.  https://doi.org/10.1039/C6EE00811ACrossRefGoogle Scholar
  4. 4.
    Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Memb Sci 279:1–49.  https://doi.org/10.1016/j.memsci.2005.12.062CrossRefGoogle Scholar
  5. 5.
    Shao P, Dal-Cin MM, Guiver MD, Kumar A (2013) Simulation of membrane-based CO2 capture in a coal-fired power plant. J Memb Sci 427:451–459.  https://doi.org/10.1016/j.memsci.2012.09.044CrossRefGoogle Scholar
  6. 6.
    Adewole JK, Ahmad AL, Ismail S, Leo CP (2013) Current challenges in membrane separation of CO2 from natural gas: a review. Int J Greenhouse Gas Control 17:46–65.  https://doi.org/10.1016/j.ijggc.2013.04.012CrossRefGoogle Scholar
  7. 7.
    Arneth A, Harrison SP, Zaehle S et al (2010) Terrestrial biogeochemical feedbacks in the climate system. Nat Geosci 3:525CrossRefGoogle Scholar
  8. 8.
    Rahman FA, Aziz MMA, Saidur R et al (2017) Pollution to solution: capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future. Renew Sustain Energy Rev 71:112–126.  https://doi.org/10.1016/j.rser.2017.01.011CrossRefGoogle Scholar
  9. 9.
    Steeneveldt R, Berger B, Torp TA (2006) CO2 capture and storage. Chem Eng Res Des 84:739–763.  https://doi.org/10.1205/cherd05049CrossRefGoogle Scholar
  10. 10.
    Mccoy S, Rubin E (2008) An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. Int J Greenhouse Gas Control 2:219–229.  https://doi.org/10.1016/S1750-5836(07)00119-3CrossRefGoogle Scholar
  11. 11.
    Stewart C, Hessami M-A (2005) A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach. Energy Convers Manag 46:403–420.  https://doi.org/10.1016/j.enconman.2004.03.009CrossRefGoogle Scholar
  12. 12.
    Figueroa JD, Fout T, Plasynski S et al (2008) Advances in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int J Greenhouse Gas Control 2:9–20.  https://doi.org/10.1016/S1750-5836(07)00094-1CrossRefGoogle Scholar
  13. 13.
    Haszeldine RS (2009) Carbon capture and storage: how green can black be? Science 325:1647–1652.  https://doi.org/10.1126/science.1172246CrossRefGoogle Scholar
  14. 14.
    Jansen D, Gazzani M, Manzolini G et al (2015) Pre-combustion CO2 capture. Int J Greenhouse Gas Control 40:167–187.  https://doi.org/10.1016/j.ijggc.2015.05.028CrossRefGoogle Scholar
  15. 15.
    Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62.  https://doi.org/10.1016/j.applthermaleng.2009.05.005CrossRefGoogle Scholar
  16. 16.
    Li J, Zhang H, Gao Z et al (2017) CO2 capture with chemical looping combustion of gaseous fuels: an overview. Energy Fuels 31:3475–3524.  https://doi.org/10.1021/acs.energyfuels.6b03204CrossRefGoogle Scholar
  17. 17.
    Ryden M, Lyngfelt A (2006) Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. Int J Hydrogen Energy 31:1271–1283.  https://doi.org/10.1016/j.ijhydene.2005.12.003CrossRefGoogle Scholar
  18. 18.
    Fang H, Haibin L, Zengli Z (2009) Advancements in development of chemical-looping combustion: a review. Int J Chem Eng 2009:1–16.  https://doi.org/10.1155/2009/710515CrossRefGoogle Scholar
  19. 19.
    Pires JCM, Martins FG, Alvim-Ferraz MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460.  https://doi.org/10.1016/j.cherd.2011.01.028CrossRefGoogle Scholar
  20. 20.
    Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45:8624–8632.  https://doi.org/10.1021/es104291dCrossRefGoogle Scholar
  21. 21.
    Yamasaki A (2003) An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. J Chem Eng Japan 36:361–375.  https://doi.org/10.1252/jcej.36.361CrossRefGoogle Scholar
  22. 22.
    Darde V, Thomsen K, van Well WJM, Stenby EH (2010) Chilled ammonia process for CO2 capture. Int J Greenhouse Gas Control 4:131–136.  https://doi.org/10.1016/j.ijggc.2009.10.005CrossRefGoogle Scholar
  23. 23.
    Lu S, Ma Y, Zhu C, Shen S (2007) The enhancement of CO2 chemical absorption by K2CO3 aqueous solution in the presence of activated carbon particles [Supported by the National Natural Science Foundation of China (No. 20176036)]. Chinese J Chem Eng 15:842–846.  https://doi.org/10.1016/S1004-9541(08)60012-9CrossRefGoogle Scholar
  24. 24.
    Kim YE, Choi JH, Nam SC, Il Yoon Y (2011) CO2 absorption characteristics in aqueous K2CO3/piperazine solution by NMR spectroscopy. Ind Eng Chem Res 50:9306–9313.  https://doi.org/10.1021/ie102489rCrossRefGoogle Scholar
  25. 25.
    Dong W, Chen X, Yu F, Wu Y (2015) Na2CO3/MgO/Al2O3 solid sorbents for low-temperature CO2 capture. Energy Fuels 29:968–973.  https://doi.org/10.1021/ef502400sCrossRefGoogle Scholar
  26. 26.
    Majchrowicz ME, Brilman DWF (Wim), Groeneveld MJ (2009) Precipitation regime for selected amino acid salts for CO2 capture from flue gases. Energy Procedia 1:979–984.  https://doi.org/10.1016/j.egypro.2009.01.130CrossRefGoogle Scholar
  27. 27.
    Knudsen JN, Jensen JN, Vilhelmsen P-J, Biede O (2009) Experience with CO2 capture from coal flue gas in pilot-scale: testing of different amine solvents. Energy Procedia 1:783–790.  https://doi.org/10.1016/j.egypro.2009.01.104CrossRefGoogle Scholar
  28. 28.
    Drage TC, Smith KM, Pevida C et al (2009) Development of adsorbent technologies for post-combustion CO2 capture. Energy Procedia 1:881–884.  https://doi.org/10.1016/j.egypro.2009.01.117CrossRefGoogle Scholar
  29. 29.
    Choi S, Drese JH, Jones CW (2009) Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. Chemsuschem 2:796–854.  https://doi.org/10.1002/cssc.200900036CrossRefGoogle Scholar
  30. 30.
    Ho MT, Allinson GW, Wiley DE (2008) Reducing the cost of CO2 capture from flue gases using membrane technology. Ind Eng Chem Res 47:1562–1568.  https://doi.org/10.1021/ie070541yCrossRefGoogle Scholar
  31. 31.
    Yu C-H (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res.  https://doi.org/10.4209/aaqr.2012.05.0132CrossRefGoogle Scholar
  32. 32.
    Plaza MG, García S, Rubiera F et al (2010) Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies. Chem Eng J 163:41–47.  https://doi.org/10.1016/j.cej.2010.07.030CrossRefGoogle Scholar
  33. 33.
    Wang Q, Luo J, Zhong Z, Borgna A (2011) CO2 capture by solid adsorbents and their applications: current status and new trends. Energy Environ Sci 4:42–55.  https://doi.org/10.1039/C0EE00064GCrossRefGoogle Scholar
  34. 34.
    Liu X, Li J, Zhou L et al (2005) Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve. Chem Phys Lett 415:198–201.  https://doi.org/10.1016/j.cplett.2005.09.009CrossRefGoogle Scholar
  35. 35.
    Chew T-L, Ahmad AL, Bhatia S (2010) Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Adv Colloid Interface Sci 153:43–57.  https://doi.org/10.1016/j.cis.2009.12.001CrossRefGoogle Scholar
  36. 36.
    Banerjee R, Furukawa H, Britt D et al (2009) Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. J Am Chem Soc 131:3875–3877.  https://doi.org/10.1021/ja809459eCrossRefGoogle Scholar
  37. 37.
    Kuppler RJ, Timmons DJ, Fang Q-R et al (2009) Potential applications of metal-organic frameworks. Coord Chem Rev 253:3042–3066.  https://doi.org/10.1016/j.ccr.2009.05.019CrossRefGoogle Scholar
  38. 38.
    Pfaff I, Kather A (2009) Comparative thermodynamic analysis and integration issues of CCS steam power plants based on oxy-combustion with cryogenic or membrane based air separation. Energy Procedia 1:495–502.  https://doi.org/10.1016/j.egypro.2009.01.066CrossRefGoogle Scholar
  39. 39.
    Hart A, Gnanendran N (2009) Cryogenic CO2 capture in natural gas. Energy Procedia 1:697–706.  https://doi.org/10.1016/j.egypro.2009.01.092CrossRefGoogle Scholar
  40. 40.
    Lively RP, Koros WJ, Johnson JR (2012) Enhanced cryogenic CO2 capture using dynamically operated low-cost fiber beds. Chem Eng Sci 71:97–103.  https://doi.org/10.1016/j.ces.2011.11.042CrossRefGoogle Scholar
  41. 41.
    Burdyny T, Struchtrup H (2010) Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy 35:1884–1897.  https://doi.org/10.1016/j.energy.2009.12.033CrossRefGoogle Scholar
  42. 42.
    Moftakhari Sharifzadeh MM, Ebadi Amooghin A, Zamani Pedram M, Omidkhah M (2016) Time-dependent mathematical modeling of binary gas mixture in facilitated transport membranes (FTMs): a real condition for single-reaction mechanism. J Ind Eng Chem 39:48–65.  https://doi.org/10.1016/j.jiec.2016.05.004CrossRefGoogle Scholar
  43. 43.
    Wong KC, Goh PS, Ismail AF (2016) Thin film nanocomposite: the next generation selective membrane for CO2 removal. J Mater Chem A 4:15726–15748.  https://doi.org/10.1039/C6TA05145FCrossRefGoogle Scholar
  44. 44.
    Kentish S, Scholes C, Stevens G (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem Eng 1:52–66.  https://doi.org/10.2174/2211334710801010052CrossRefGoogle Scholar
  45. 45.
    Wang M, Lawal A, Stephenson P et al (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89:1609–1624.  https://doi.org/10.1016/j.cherd.2010.11.005CrossRefGoogle Scholar
  46. 46.
    Olajire AA (2010) CO2 capture and separation technologies for end-of-pipe applications—a review. Energy 35:2610–2628.  https://doi.org/10.1016/j.energy.2010.02.030CrossRefGoogle Scholar
  47. 47.
    Luebke D, Myers C, Pennline H (2006) Hybrid membranes for selective carbon dioxide separation from fuel gas. Energy Fuels 20:1906–1913.  https://doi.org/10.1021/ef060060bCrossRefGoogle Scholar
  48. 48.
    Shimekit B, Mukhtar H, Ahmad F, Maitra S (2009) Ceramic membranes for the separation of carbon dioxide-a review. Trans Indian Ceram Soc 68:115–138.  https://doi.org/10.1080/0371750X.2009.11082166CrossRefGoogle Scholar
  49. 49.
    Ismail AF, Goh PS, Sanip SM, Aziz M (2009) Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep Purif Technol 70:12–26.  https://doi.org/10.1016/j.seppur.2009.09.002CrossRefGoogle Scholar
  50. 50.
    Amedi HR, Aghajani M (2017) Aminosilane-functionalized ZIF-8/PEBA mixed matrix membrane for gas separation application. Microporous Mesoporous Mater 247:124–135.  https://doi.org/10.1016/j.micromeso.2017.04.001CrossRefGoogle Scholar
  51. 51.
    Vinh-Thang H, Kaliaguine S (2013) Predictive models for mixed-matrix membrane performance: a review. Chem Rev 113:4980–5028.  https://doi.org/10.1021/cr3003888CrossRefGoogle Scholar
  52. 52.
    Vinoba M, Bhagiyalakshmi M, Alqaheem Y et al (2017) Recent progress of fillers in mixed matrix membranes for CO2 separation: a review. Sep Purif Technol 188:431–450.  https://doi.org/10.1016/j.seppur.2017.07.051CrossRefGoogle Scholar
  53. 53.
    Dong G, Zhang X, Zhang Y, Tsuru T (2018) Enhanced permeation through CO2-stable dual-inorganic composite membranes with tunable nano-architectured channels. ACS Sustain Chem Eng 6:8515–8524.  https://doi.org/10.1021/acssuschemeng.8b00792CrossRefGoogle Scholar
  54. 54.
    Li W, Samarasinghe SASC, Bae TH (2018) Enhancing CO2/CH4separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8. J Ind Eng Chem, 4–11.  https://doi.org/10.1016/j.jiec.2018.06.026CrossRefGoogle Scholar
  55. 55.
    Xin Q, Li Z, Li C et al (2015) Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. J Mater Chem A 3:6629–6641.  https://doi.org/10.1039/C5TA00506JCrossRefGoogle Scholar
  56. 56.
    LeBlanc OH, Ward WJ, Matson SL, Kimura SG (1980) Facilitated transport in ion-exchange membranes. J Memb Sci 6:339–343.  https://doi.org/10.1016/S0376-7388(00)82175-4CrossRefGoogle Scholar
  57. 57.
    Way JD, Noble RD, Reed DL et al (1987) Facilitated transport of CO2 in ion exchange membranes. AIChE J 33:480–487.  https://doi.org/10.1002/aic.690330313CrossRefGoogle Scholar
  58. 58.
    Takada K, Matsuya H, Masuda T, Higashimura T (1985) Gas permeability of polyacetylenes carrying substituents. J Appl Polym Sci 30:1605–1616.  https://doi.org/10.1002/app.1985.070300426CrossRefGoogle Scholar
  59. 59.
    Rebattet L, Escoubes M, Genies E, Pineri M (1995) Effect of doping treatment on gas transport properties and on separation factors of polyaniline memebranes. J Appl Polym Sci 57:1595–1604.  https://doi.org/10.1002/app.1995.070571307CrossRefGoogle Scholar
  60. 60.
    Xu Z, Dannenberg C, Springer J et al (2002) Novel poly(arylene ether) as membranes for gas separation. J Memb Sci 205:23–31.  https://doi.org/10.1016/S0376-7388(02)00045-5CrossRefGoogle Scholar
  61. 61.
    Al-Masri M, Kricheldorf HR, Fritsch D (1999) New polyimides for gas separation. 1. Polyimides derived from substituted terphenylenes and 4,4′-(Hexafluoroisopropylidene) diphthalic anhydride. Macromolecules 32:7853–7858.  https://doi.org/10.1021/ma9910742CrossRefGoogle Scholar
  62. 62.
    Lin H, Freeman BD (2004) Gas solubility, diffusivity and permeability in poly(ethylene oxide). J Memb Sci 239:105–117.  https://doi.org/10.1016/j.memsci.2003.08.031CrossRefGoogle Scholar
  63. 63.
    Mannan HA, Mukhtar H, Shaharun MS et al (2016) Polysulfone/poly(ether sulfone) blended membranes for CO2 separation. J Appl Polym Sci 133:n/a-n/a.  https://doi.org/10.1002/app.42946Google Scholar
  64. 64.
    Quinn R, Appleby JB, Pez GP (1995) New facilitated transport membranes for the separation of carbon dioxide from hydrogen and methane. J Memb Sci 104:139–146.  https://doi.org/10.1016/0376-7388(95)00021-4CrossRefGoogle Scholar
  65. 65.
    Shen J, Wu L, Wang D, Gao C (2008) Sorption behavior and separation performance of novel facilitated transport membranes for CO2/CH4 mixtures. Desalination 223:425–437.  https://doi.org/10.1016/j.desal.2007.01.186CrossRefGoogle Scholar
  66. 66.
    Ho WSW, Sirkar KK (1992) Membrane handbook. Springer, Boston, MACrossRefGoogle Scholar
  67. 67.
    Huang J, Zou J, Ho WSW (2008) Carbon dioxide capture using a CO2—selective facilitated transport membrane. Ind Eng Chem Res 47:1261–1267.  https://doi.org/10.1021/ie070794rCrossRefGoogle Scholar
  68. 68.
    Prasad B, Mandal B (2017) CO2 separation performance by chitosan/tetraethylenepentamine/ poly(ether sulfone) composite membrane. J Appl Polym Sci 134:1–9.  https://doi.org/10.1002/app.45206CrossRefGoogle Scholar
  69. 69.
    Bhown A, Cussler EL (1991) Mechanism for selective ammonia transport through poly(vinylammonium thiocyanate) membranes. J Am Chem Soc 113:742–749.  https://doi.org/10.1021/ja00003a002CrossRefGoogle Scholar
  70. 70.
    Cussler EL, Aris R, Bhown A (1989) On the limits of facilitated diffusion. J Memb Sci 43:149–164.  https://doi.org/10.1016/S0376-7388(00)85094-2CrossRefGoogle Scholar
  71. 71.
    Yoshikawa M, Ezaki T, Sanui K, Ogata N (1988) Selective permeation of carbon dioxide through synthetic polymer membranes having pyridine moiety as a fixed carrier. J Appl Polym Sci 35:145–154.  https://doi.org/10.1002/app.1988.070350113CrossRefGoogle Scholar
  72. 72.
    Yoshikawa M, Fujimoto K, Kinugawa H et al (1995) Specialty polymeric membranes. V. Selective permeation of carbon dioxide through synthetic polymeric membranes having 2-(N, N-dimethyl)aminoethoxycarbonyl moiety. J Appl Polym Sci 58:1771–1778.  https://doi.org/10.1002/app.1995.070581015CrossRefGoogle Scholar
  73. 73.
    Tong Z, Ho WSW (2017) Facilitated transport membranes for CO2 separation and capture. Sep Sci Technol 52:156–167.  https://doi.org/10.1080/01496395.2016.1217885CrossRefGoogle Scholar
  74. 74.
    Idris Z, Eimer DA (2013) Representation of CO2 absorption in sterically hindered amines. Energy Procedia 51:247–252.  https://doi.org/10.1016/j.egypro.2014.07.028CrossRefGoogle Scholar
  75. 75.
    Francisco GJ, Chakma A, Feng X (2007) Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO2/N2 separation. J Memb Sci 303:54–63.  https://doi.org/10.1016/j.memsci.2007.06.065CrossRefGoogle Scholar
  76. 76.
    Zou J, Ho WSW (2006) CO2-selective polymeric membranes containing amines in crosslinked poly(vinyl alcohol). J Memb Sci 286:310–321.  https://doi.org/10.1016/j.memsci.2006.10.013CrossRefGoogle Scholar
  77. 77.
    Kim T-J, Li B, Hägg M-B (2004) Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. J Polym Sci B Polym Phys 42:4326–4336.  https://doi.org/10.1002/polb.20282CrossRefGoogle Scholar
  78. 78.
    Nagel C, Günther-Schade K, Fritsch D et al (2002) Free volume and transport properties in highly selective polymer membranes. Macromolecules 35:2071–2077.  https://doi.org/10.1021/ma011028dCrossRefGoogle Scholar
  79. 79.
    Deng L, Kim T-J, Hägg M-B (2009) Facilitated transport of CO2 in novel PVAm/PVA blend membrane. J Memb Sci 340:154–163.  https://doi.org/10.1016/j.memsci.2009.05.019CrossRefGoogle Scholar
  80. 80.
    Kim T-J, Vrålstad H, Sandru M, Hägg M-B (2013) Separation performance of PVAm composite membrane for CO2 capture at various pH levels. J Memb Sci 428:218–224.  https://doi.org/10.1016/j.memsci.2012.10.009CrossRefGoogle Scholar
  81. 81.
    Li Y, Xin Q, Wu H et al (2014) Efficient CO2 capture by humidified polymer electrolyte membranes with tunable water state. Energy Environ Sci 7:1489.  https://doi.org/10.1039/c3ee43163kCrossRefGoogle Scholar
  82. 82.
    Liu L, Chakma A, Feng X (2008) Gas permeation through water-swollen hydrogel membranes. J Memb Sci 310:66–75.  https://doi.org/10.1016/j.memsci.2007.10.032CrossRefGoogle Scholar
  83. 83.
    Wang J, Wang S, Xin Q, Li Y (2017) Perspectives on water-facilitated CO2 capture materials. J Mater Chem A 5:6794–6816.  https://doi.org/10.1039/C7TA01297GCrossRefGoogle Scholar
  84. 84.
    Kouketsu T, Duan S, Kai T et al (2007) PAMAM dendrimer composite membrane for CO2 separation: formation of a chitosan gutter layer. J Memb Sci 287:51–59.  https://doi.org/10.1016/j.memsci.2006.10.014CrossRefGoogle Scholar
  85. 85.
    Prasad B, Mandal B (2018) Graphene-incorporated biopolymeric mixed-matrix membrane for enhanced CO2 separation by regulating the support pore filling. ACS Appl Mater Interfaces 10:27810–27820.  https://doi.org/10.1021/acsami.8b09377CrossRefGoogle Scholar
  86. 86.
    Laroche G, Fitremann J, Gherardi N (2013) FTIR-ATR spectroscopy in thin film studies: the importance of sampling depth and deposition substrate. Appl Surf Sci 273:632–637.  https://doi.org/10.1016/j.apsusc.2013.02.095CrossRefGoogle Scholar
  87. 87.
    Kousaalya AB, Biddappa BI, Krumm K et al (2018) Poly(lactic acid)/areca fiber laminate composites processed via film stacking technique. J Appl Polym Sci 135:1–12.  https://doi.org/10.1002/app.45795CrossRefGoogle Scholar
  88. 88.
    Soudais Y, Moga L, Blazek J, Lemort F (2007) Coupled DTA-TGA-FT-IR investigation of pyrolytic decomposition of EVA, PVC and cellulose. J Anal Appl Pyrolysis 78:46–57.  https://doi.org/10.1016/j.jaap.2006.04.005CrossRefGoogle Scholar
  89. 89.
    Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852.  https://doi.org/10.1016/j.progpolymsci.2008.05.004CrossRefGoogle Scholar
  90. 90.
    Yang JM, Su WY, Leu TL, Yang MC (2004) Evaluation of chitosan/PVA blended hydrogel membranes. J Memb Sci 236:39–51.  https://doi.org/10.1016/j.memsci.2004.02.005CrossRefGoogle Scholar
  91. 91.
    Narducci R, Chailan J-F, Fahs A et al (2016) Mechanical properties of anion exchange membranes by combination of tensile stress-strain tests and dynamic mechanical analysis. J Polym Sci B Polym Phys 54:1180–1187.  https://doi.org/10.1002/polb.24025CrossRefGoogle Scholar
  92. 92.
    Wu YB, Yu SH, Mi FL et al (2004) Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydr Polym 57:435–440.  https://doi.org/10.1016/j.carbpol.2004.05.013CrossRefGoogle Scholar
  93. 93.
    Ray SS, Chen SS, Chang HM et al (2018) Enhanced desalination using a three-layer OTMS based superhydrophobic membrane for a membrane distillation process. RSC Adv 8:9640–9650.  https://doi.org/10.1039/c8ra01043aCrossRefGoogle Scholar
  94. 94.
    Scholes CA, Kentish SE, Stevens GW (2009) The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture. Energy Procedia 1:311–317.  https://doi.org/10.1016/j.egypro.2009.01.043CrossRefGoogle Scholar
  95. 95.
    Baker RW (2004) Membrane technology and applicationsGoogle Scholar
  96. 96.
    Wu J, Yuan Q (2002) Gas permeability of a novel cellulose membrane. J Memb Sci 204:185–194.  https://doi.org/10.1016/S0376-7388(02)00037-6CrossRefGoogle Scholar
  97. 97.
    Houde AY, Krishnakumar B, Charati SG, Stern SA (1996) Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures. J Appl Polym Sci 62:2181–2192.  https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13%3c2181:AID-APP1%3e3.0.CO;2-FCrossRefGoogle Scholar
  98. 98.
    Li J, Nagai K, Nakagawa T, Wang S (1995) Preparation of polyethyleneglycol (PEG) and cellulose acetate (CA) blend membranes and their gas permeabilities. J Appl Polym Sci 58:1455–1463.  https://doi.org/10.1002/app.1995.070580906CrossRefGoogle Scholar
  99. 99.
    Puleo AC, Paul DR, Kelley SS (1989) The effect of degree of acetylation on gas sorption and transport behavior in cellulose acetate. J Memb Sci 47:301–332.  https://doi.org/10.1016/S0376-7388(00)83083-5CrossRefGoogle Scholar
  100. 100.
    Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic Acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4:2899–2916.  https://doi.org/10.1021/acssuschemeng.6b00321CrossRefGoogle Scholar
  101. 101.
    Jami’an WNR, Hasbullah H, Mohamed F et al (2015) Biodegradable gas separation membrane preparation by manipulation of casting parameters. Chem Eng Trans 43:1–6.  https://doi.org/10.3303/CET1543185CrossRefGoogle Scholar
  102. 102.
    Bao L, Dorgan JR, Knauss D et al (2006) Gas permeation properties of poly(lactic acid) revisited. J Memb Sci 285:166–172.  https://doi.org/10.1016/j.memsci.2006.08.021CrossRefGoogle Scholar
  103. 103.
    El-Azzami LA, Grulke EA (2008) Carbon dioxide separation from hydrogen and nitrogen by fixed facilitated transport in swollen chitosan membranes. J Memb Sci 323:225–234.  https://doi.org/10.1016/j.memsci.2008.05.019CrossRefGoogle Scholar
  104. 104.
    Ito A, Sato M, Anma T (1997) Permeability of CO2 through chitosan membrane swollen by water vapor in feed gas. Angew Makromol Chemie 248:85–94.  https://doi.org/10.1002/apmc.1997.052480105CrossRefGoogle Scholar
  105. 105.
    Bae SY, Lee KH, Yi SC et al (1998) CO2, N2 gas sorption and permeation behavior of chitosan membrane. Korean J Chem Eng 15:223–226.  https://doi.org/10.1007/BF02707076CrossRefGoogle Scholar
  106. 106.
    Shen Y, Wang H, Liu J, Zhang Y (2015) Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 Capture. ACS Sustain Chem Eng 3:1819–1829.  https://doi.org/10.1021/acssuschemeng.5b00409CrossRefGoogle Scholar
  107. 107.
    Casado-Coterillo C, Fernández-Barquín A, Zornoza B et al (2015) Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation. RSC Adv 5:102350–102361.  https://doi.org/10.1039/C5RA19331ACrossRefGoogle Scholar
  108. 108.
    Santos E, Rodríguez-Fernández E, Casado-Coterillo C, Irabien Á (2016) Hybrid ionic liquid-chitosan membranes for CO2 separation: mechanical and thermal behavior. Int J Chem React Eng 14.  https://doi.org/10.1515/ijcre-2014-0109CrossRefGoogle Scholar
  109. 109.
    Koros WJ, Chan AH, Paul DR (1977) Sorption and transport of various gases in polycarbonate. J Memb Sci 2:165–190.  https://doi.org/10.1016/S0376-7388(00)83242-1CrossRefGoogle Scholar
  110. 110.
    David OC, Gorri D, Urtiaga A, Ortiz I (2011) Mixed gas separation study for the hydrogen recovery from H2/CO/N2/CO2 post combustion mixtures using a Matrimid membrane. J Memb Sci 378:359–368.  https://doi.org/10.1016/j.memsci.2011.05.029CrossRefGoogle Scholar
  111. 111.
    Dhingra SS, Marand E (1998) Mixed gas transport study through polymeric membranes. J Memb Sci 141:45–63.  https://doi.org/10.1016/S0376-7388(97)00285-8CrossRefGoogle Scholar
  112. 112.
    Wu F, Li L, Xu Z et al (2006) Transport study of pure and mixed gases through PDMS membrane. Chem Eng J 117:51–59.  https://doi.org/10.1016/j.cej.2005.12.010CrossRefGoogle Scholar
  113. 113.
    Prasad B, Mandal B (2018) Moisture responsive and CO2 selective biopolymer membrane containing silk fibroin as a green carrier for facilitated transport of CO2. J Memb Sci 550:416–426.  https://doi.org/10.1016/j.memsci.2017.12.061CrossRefGoogle Scholar
  114. 114.
    Chen Y, Ho WSW (2016) High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. J Memb Sci 514:376–384.  https://doi.org/10.1016/j.memsci.2016.05.005CrossRefGoogle Scholar
  115. 115.
    Roy JP, Mishra MK, Misra A (2010) Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle. Energy 35:5049–5062.  https://doi.org/10.1016/j.energy.2010.08.013CrossRefGoogle Scholar
  116. 116.
    Prasad B, Mandal B (2018) Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly(allylamine) blend for CO2/N2 separation. J Ind Eng Chem 66:419–429.  https://doi.org/10.1016/j.jiec.2018.06.009CrossRefGoogle Scholar
  117. 117.
    Zhang Y, Sunarso J, Liu S, Wang R (2013) International Journal of Greenhouse Gas Control Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenhouse Gas Control 12:84–107.  https://doi.org/10.1016/j.ijggc.2012.10.009CrossRefGoogle Scholar
  118. 118.
    Mondal A, Mandal B (2013) Synthesis and characterization of crosslinked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. J Memb Sci 446:383–394.  https://doi.org/10.1016/j.memsci.2013.06.052CrossRefGoogle Scholar
  119. 119.
    Chen Y, Zhao L, Wang B et al (2016) Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation. J Memb Sci 497:21–28.  https://doi.org/10.1016/j.memsci.2015.09.036CrossRefGoogle Scholar
  120. 120.
    Zhang L, Wang R (2012) Salting-out effect on facilitated transport membranes for CO2 separation: from fluoride salt to polyoxometalates. RSC Adv 2:9551.  https://doi.org/10.1039/c2ra20882bCrossRefGoogle Scholar
  121. 121.
    Kobayashi S, Do SuhK, Shirokura Y (1989) Chelating ability of poly(vinylamine): effects of polyamine structure on chelation. Macromolecules 22:2363–2366.  https://doi.org/10.1021/ma00195a062CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Babul Prasad
    • 1
  • Rajashree Borgohain
    • 1
  • Bishnupada Mandal
    • 1
    Email author
  1. 1.Department of Chemical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations