Quantum Field Theory for Quantum Finance

  • Raymond S. T. LeeEmail author


This chapter introduces a general overview of four major concepts and models in quantum theory: quantum mechanics, quantum field theory, Feynman’s path integral, and quantum anharmonic oscillators. These four concepts with models in quantum theory form critical mass to establish the basic theoretical and mathematical models in quantum finance theory in next chapter, namely, Feynman’s path integral model of quantum finance (also known as first generation of quantum finance) and quantum anharmonic model of quantum finance (also known as second generation of quantum finance). To avoid complex mathematical derivations, this chapter focuses on the basic concepts of quantum theory with its related models that are crucial to understand the mathematical and quantum model in quantum finance.


  1. Assche, G. (2006) Quantum Cryptography and Secret-Key Distillation. Cambridge University Press; 1 edition.Google Scholar
  2. Baaquie, B. (2018) Quantum Field Theory for Economics and Finance. Cambridge University Press. 1st edition.Google Scholar
  3. Becherrawy, T. (2012) Electromagnetism: Maxwell Equations, Wave Propagation and Emission. Wiley-ISTE; 1 edition, 2012.Google Scholar
  4. Blaise, P. and Henri-Rousseau O. (2011) Quantum Oscillators. Wiley.Google Scholar
  5. Bohr, N. (1913) On the Constitution of Atoms and Molecules, Part I” (PDF). Philosophical Magazine. 26 (151): 1–24.Google Scholar
  6. Davisson, C. J. and Germer, L. H. (1928) Reflection of Electrons by a Crystal of Nickel. Proceedings of the National Academy of Sciences of the United States of America. 14 (4): 317–322.CrossRefGoogle Scholar
  7. Einstein, A. (1905) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [On a Heuristic Viewpoint Concerning the Production and Transformation of Light]. Annalen der Physik (Berlin) (in German). Hoboken, NJ (published 10 March 2006). 322 (6): 132–148.CrossRefGoogle Scholar
  8. Einstein, A., Podolsky, B., Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review 47 (10): 777–780.CrossRefGoogle Scholar
  9. Feynman, R. P. (1948) Space-Time Approach to Non-Relativistic Quantum Mechanics. Reviews of Modern Physics. 20 (2): 367–387.MathSciNetCrossRefGoogle Scholar
  10. Feynman, R. P.; Hibbs, A. R. (1965) Quantum Mechanics and Path Integrals. New York: McGraw-Hill.Google Scholar
  11. Gilyarov V. L. and Slutsker, A. I. (2010) Energy features of a loaded quantum anharmonic oscillator. Physics of the Solid State 52(3): 585–590.CrossRefGoogle Scholar
  12. Heisenberg, W. (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik. 33 (1): 879–893.Google Scholar
  13. Laloë, F. (2012) Applications of quantum entanglement. In Do We Really Understand Quantum Mechanics? Cambridge University Press, 150–167.Google Scholar
  14. Padmanabhan, T. (2016) Quantum Field Theory: The Why, What and How (Graduate Texts in Physics). Springer.Google Scholar
  15. Padilla A. and Pérez, J. (2012) A Simulation Study of the Fundamental Vibrational Shifts of HCl Diluted in Ar, Kr, and Xe: Anharmonic Corrections Effects. International Journal of Spectroscopy, 2012: 1–7.CrossRefGoogle Scholar
  16. Planck, M. (1901) Ueber das Gesetz der Energieverteilung im Normalspectrum [On the law of the distribution of energy in the normal spectrum]. Annalen der Physik. 4 (3): 553–563.CrossRefGoogle Scholar
  17. Plotnitsky, A. (2010) Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking (Fundamental Theories of Physics). Springer.Google Scholar
  18. Sen, A. (1926) Quantum Entanglement and its Applications. Current Science 112(7): 1361, 2017.CrossRefGoogle Scholar
  19. Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Physical Review 28: 1049–1070.CrossRefGoogle Scholar
  20. Schrödinger, E. (1935) Discussion of probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society. 31 (4): 555–563.CrossRefGoogle Scholar
  21. Yanofsky, N. S. and Mannucci, M. A. (2008) Quantum Computing for Computer Scientists. Cambridge University Press; 1 edition.Google Scholar
  22. Young, T. (1802) The Bakerian Lecture: On the Theory of Light and Colours. Philosophical Transactions of the Royal Society of London. 92: 12–48.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Division of Science and TechnologyBeijing Normal University-Hong Kong Baptist University United International College (UIC)ZhuhaiChina

Personalised recommendations