Clinical and Pathological Diagnosis of Scars

  • Chenyu Huang
  • Longwei Liu
  • Zhifeng You
  • Zhaozhao Wu
  • Yanan Du
  • Rei Ogawa


Cutaneous scars are believed to be due to aberrant wound healing that alters the levels of collagens in the dermis. Definite diagnoses of scar types that clearly distinguish them from other scar types will facilitate the selection of the most appropriate therapies for individual scars and patients. To this end, cutaneous scars are classified as normal scars, atrophic scars, hypertrophic scars, and keloids in this chapter. These different scar types will be reviewed in terms of their clinical symptoms and signs, the associated pathological changes in cellular and extracellular components, their appearance and effect on function, and how they can be diagnosed. The differential diagnosis of these scar types will also be discussed in detail.


Normal scar Atrophic scar Hypertrophic scar Keloid Marjolin’s ulcer Scar mechanobiology Keloid differentiation 


  1. 1.
    Huang C, Murphy GF, Akaishi S, Ogawa R. Keloids and hypertrophic scars: update and future directions. Plast Reconstr Surg Glob Open. 2013;1(4):e25.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Huang C, Ogawa R. The link between hypertension and pathological scarring: does hypertension cause or promote keloid and hypertrophic scar pathogenesis? Wound Repair Regen. 2014;22(4):462–6.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Huang C, Liu L, You Z, Wang B, Du Y, Ogawa R. Keloid progression: a stiffness gap hypothesis. Int Wound J. 2017;14(5):764–71.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Huang C, Liu L, You Z, Zhao Y, Dong J, Du Y, Ogawa R. Endothelial Dysfunction and mechanobiology in pathological cutaneous scarring: lessons learned from soft tissue fibrosis. Br J Dermatol. 2017;177(5):1248–55.CrossRefGoogle Scholar
  5. 5.
    Huang C, Ogawa R. Roles of lipid metabolism in keloid development. Lipids Health Dis. 2013;12:60.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Huang C, Akaishi S, Ogawa R. Mechanosignaling pathways in cutaneous scarring. Arch Dermatol Res. 2012;304(8):589–97.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Smith GM, Tompkins DM, Bigelow ME, Antoon AY. Burn-induced cosmetic disfigurement: can it be measured reliably? J Burn Care Rehabil. 1988;9(4):371–5.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Sullivan T, Smith J, Kermode J, McIver E, Courtemanche DJ. Rating the burn scar. J Burn Care Rehabil. 1990;11(3):256–60.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Yeong EK, Mann R, Engrav LH, Goldberg M, Cain V, Costa B, Moore M, Nakamura D, Lee J. Improved burn scar assessment with use of a new scar-rating scale. J Burn Care Rehabil. 1997;18(4):353–5.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Beausang E, Floyd H, Dunn KW, Orton CI, Ferguson MW. A new quantitative scale for clinical scar assessment. Plast Reconstr Surg. 1998;102(6):1954–61.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Crowe JM, Simpson K, Johnson W, Allen J. Reliability of photographic analysis in determining change in scar appearance. J Burn Care Rehabil. 1998;19(2):183–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Draaijers LJ, Tempelman FR, Botman YA, Tuinebreijer WE, Middelkoop E, Kreis RW, van Zuijlen PP. The patient and observer scar assessment scale: a reliable and feasible tool for scar evaluation. Plast Reconstr Surg. 2004;113(7):1960–5.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Masters M, McMahon M, Svens B. Reliability testing of a new scar assessment tool, Matching Assessment of Scars and Photographs (MAPS). J Burn Care Rehabil. 2005;26(3):273–84.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Singer AJ, Arora B, Dagum A, Valentine S, Hollander JE. Development and validation of a novel scar evaluation scale. Plast Reconstr Surg. 2007;120(7):1892–7.CrossRefGoogle Scholar
  15. 15.
    Hultman CS, Friedstat JS, Edkins RE, Cairns BA, Meyer AA. Laser resurfacing and remodeling of hypertrophic burn scars: the results of a large, prospective, before-after cohort study, with long-term follow-up. Ann Surg. 2014;260(3):519–29.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hultman CS, Edkins RE, Lee CN, Calvert CT, Cairns BA. Shine on: review of laser- and light-based therapies for the treatment of burn scars. Dermatol Res Pract. 2012;2012:243651.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nguyen TA, Feldstein SI, Shumaker PR, Krakowski AC. A review of scar assessment scales. Semin Cutan Med Surg. 2015;34(1):28–36.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Idriss N, Maibach HI. Scar assessment scales: a dermatologic overview. Skin Res Technol. 2009;15(1):1–5.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ogawa R, Akaishi S, Akita S, Okabe K, Shimizu T, Sunaga A, Tosa Y, Nagao M, Yamawaki S. JSW Scar Scale Working Group. Japan Scar Workshop (JSW) Scar Scale 2015. Available online at.
  20. 20.
    Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int J Mol Sci. 2017;18(3):606.PubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhu X, Zhuo S, Zheng L, Lu K, Jiang X, Chen J, Lin B. Quantified characterization of human cutaneous normal scar using multiphoton microscopy. J Biophotonics. 2010;3(1-2):108–16.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Amadeu TP, Braune AS, Porto LC, Desmoulière A, Costa AM. Fibrillin-1 and elastin are differentially expressed in hypertrophic scars and keloids. Wound Repair Regen. 2004;12(2):169–74.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Goodman GJ. Postacne scarring: a review of its pathophysiology and treatment. Dermatol Surg. 2000;26(9):857–71.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zhu X, Zhuo S, Zheng L, Jiang X, Chen J, Lin B. Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging. Scanning. 2011;33(4):195–200.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Tanriverdi-Akhisaroglu S, Menderes A, Oktay G. Matrix metalloproteinase-2 and -9 activities in human keloids, hypertrophic and atrophic scars: a pilot study. Cell Biochem Funct. 2009;27(2):81–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gillard JA, Reed MW, Buttle D, Cross SS, Brown NJ. Matrix metalloproteinase activity and immunohistochemical profile of matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 during human dermal wound healing. Wound Repair Regen. 2004;12(3):295–304.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ehrlich HP, Desmoulière A, Diegelmann RF, Cohen IK, Compton CC, Garner WL, Kapanci Y, Gabbiani G. Morphological and immunochemical differences between keloid and hypertrophic scar. Am J Pathol. 1994;145(1):105–13.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Clark JA, Turner ML, Howard L, Stanescu H, Kleta R, Kopp JB. Description of familial keloids in five pedigrees: evidence for autosomal dominant inheritance and phenotypic heterogeneity. BMC Dermatol. 2009;9:8.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Machesney M, Tidman N, Waseem A, Kirby L, Leigh I. Activated keratinocytes in the epidermis of hypertrophic scars. Am J Pathol. 1998;152(5):1133–41.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Niessen FB, Schalkwijk J, Vos H, Timens W. Hypertrophic scar formation is associated with an increased number of epidermal Langerhans cells. J Pathol. 2004;202(1):121–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Niessen FB, Andriessen MP, Schalkwijk J, Visser L, Timens W. Keratinocyte-derived growth factors play a role in the formation of hypertrophic scars. J Pathol. 2001;194(2):207–16.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rossiello L, D’Andrea F, Grella R, Signoriello G, Abbondanza C, De Rosa C, Prudente M, Morlando M, Rossiello R. Differential expression of cyclooxygenases in hypertrophic scar and keloid tissues. Wound Repair Regen. 2009;17(5):750–7.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mustoe TA, Gurjala A. The role of the epidermis and the mechanism of action of occlusive dressings in scarring. Wound Repair Regen. 2011;19(Suppl 1):s16–21.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rockwell WB, Cohen IK, Ehrlich HP. Keloids and hypertrophic scars: a comprehensive review. Plast Reconstr Surg. 1989;84(5):827–37.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Friedman DW, Boyd CD, Mackenzie JW, Norton P, Olson RM, Deak SB. Regulation of collagen gene expression in keloids and hypertrophic scars. J Surg Res. 1993;55(2):214–22.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Bertheim U, Hellström S. The distribution of hyaluronan in human skin and mature, hypertrophic and keloid scars. Br J Plast Surg. 1994;47:483–9.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nagata H, Ueki H, Fibronectin MT. Localization in normal human skin, granulation tissue, hypertrophic scar, mature scar, progressive systemic sclerotic skin, and other fibrosing dermatoses. Arch Dermatol. 1985;121:995–9.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Louw L. Keloids in rural black South Africans. Part 1: general overview and essential fatty acid hypotheses for keloid formation and prevention. Prostaglandins Leukot Essent Fatty Acids. 2000;63(5):237–45.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Sun LM, Wang KH, Lee YC. Keloid incidence in Asian people and its comorbidity with other fibrosis-related diseases: a nationwide population-based study. Arch Dermatol Res. 2014;306(9):803–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Ogawa R, Okai K, Tokumura F, Mori K, Ohmori Y, Huang C, Hyakusoku H, Akaishi S. The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation. Wound Repair Regen. 2012;20(2):149–57.CrossRefGoogle Scholar
  41. 41.
    Ogawa R, Akaishi S, Huang C, Dohi T, Aoki M, Omori Y, Koike S, Kobe K, Akimoto M, Hyakusoku H. Clinical applications of basic research that shows reducing skin tension could prevent and treat abnormal scarring: the importance of facial/subcutaneous tensile reduction sutures and flap surgery for keloid and hypertrophic scar reconstruction. J Nippon Med Sch. 2011;78:68–76.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Huang C, Miyazaki K, Akaishi S, Watanabe A, Hyakusoku H, Ogawa R. Biological effects of cellular stretch on human dermal fibroblasts. J Plast Reconstr Aesthet Surg. 2013;66(12):e351–61.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Bagabir R, Byers RJ, Chaudhry IH, et al. Site-specific immunophenotyping of keloid disease demonstrates immune upregulation and the presence of lymphoid aggregates. Br J Dermatol. 2012;167:1053–66.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Ong CT, Khoo YT, Mukhopadhyay A, et al. Comparative proteomic analysis between normal skin and keloid scar. Br J Dermatol. 2010;162:1302–15.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Khoo YT, Ong CT, Mukhopadhyay A, et al. Upregulation of secretory connective tissue growth factor (CTGF) in keratinocyte-fibroblast coculture contributes to keloid pathogenesis. J Cell Physiol. 2006;208:336–43.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Nakaoka H, Miyauchi S, Miki Y. Proliferating activity of dermal fibroblasts in keloids and hypertrophic scars. Acta Derm Venereol. 1995;75:102–4.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Uitto J, Perejda AJ, Abergel RP, et al. Altered steady-state ratio of type I/III procollagen mRNAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci U S A. 1985;82:5935–9.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kischer CW, Hendrix MJ. Fibronectin (FN) in hypertrophic scars and keloids. Cell Tissue Res. 1983;231:29–37.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Ogawa R, Akaishi S, Hyakusoku H. Differential and exclusive diagnosis of diseases that resemble keloids and hypertrophic scars. Ann Plast Surg. 2009;62(6):660–4.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    James WD, Berger TG, Butler DF, Tuffanelli DL. Nodular (keloidal) scleroderma. J Am Acad Dermatol. 1984;11(6):1111–4.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sabater-Marco V, Pérez-Vallés A, Berzal-Cantalejo F, Rodriguez-Serna M, Martinez-Diaz F, Martorell-Cebollada M. Sclerosing dermatofibrosarcoma protuberans (DFSP): an unusual variant with focus on the histopathologic differential diagnosis. Int J Dermatol. 2006;45(1):59–62.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Martin L, Combemale P, Dupin M, Chouvet B, Kanitakis J, Bouyssou-Gauthier ML, Dubreuil G, Claudy A, Grimand PS. The atrophic variant of dermatofibrosarcoma protuberans in childhood: a report of six cases. Br J Dermatol. 1998;139(4):719–25.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kamath NV, Ormsby A, Bergfeld WF, House NS. A light microscopic and immunohistochemical evaluation of scars. J Cutan Pathol. 2002;29(1):27–32.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Aiba S, Tabata N, Ishii H, Ootani H, Tagami H. Dermatofibrosarcoma protuberans is a unique fibrohistiocytic tumour expressing CD34. Br J Dermatol. 1992;127(2):79–84.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Altman DA, Nickoloff BJ, Fivenson DP. Differential expression of factor XIIIa and CD34 in cutaneous mesenchymal tumors. J Cutan Pathol. 1993;20(2):154–8.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Burns RA, Roy JS, Woods C, Padhye AA, Warnock DW. Report of the first human case of lobomycosis in the United States. J Clin Microbiol. 2000;38(3):1283–5.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Paniz-Mondolfi AE, Reyes Jaimes O, Dávila Jones L. Lobomycosis in Venezuela. Int J Dermatol. 2007;46(2):180–5.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Okada E, Maruyama Y. Are keloids and hypertrophic scars caused by fungal infection? Plast Reconstr Surg. 2007;120(3):814–5.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Francesconi VA, Klein AP, Santos AP, Ramasawmy R, Francesconi F. Lobomycosis: epidemiology, clinical presentation, and management options. Ther Clin Risk Manag. 2014;10:851–60.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Moshref SS, Mufti ST. Keloid and hypertrophic scars: comparative histopathological and immunohistochemical study. JKAU: Med Sci. 2010;17(3):3–22.Google Scholar
  61. 61.
    Lee JY, Yang CC, Chao SC, Wong TW. Histopathological differential diagnosis of keloid and hypertrophic scar. Am J Dermatopathol. 2004;26(5):379–84.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Huang C, Akaishi S, Hyakusoku H, Ogawa R. Are keloid and hypertrophic scar different forms of the same disorder? A fibroproliferative skin disorder hypothesis based on keloid findings. Int Wound J. 2014;11(5):517–22.CrossRefGoogle Scholar
  63. 63.
    Boyce DE, Ciampolini J, Ruge F, Murison MS, Harding KG. Inflammatory-cell subpopulations in keloid scars. Br J Plast Surg. 2001;54:511–6.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mohammadi AA, Seyed Jafari SM, Hosseinzadeh M. Early Marjolin’s ulcer after minimal superficial burn. Iran J Med Sci. 2013;38:69–70.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Aydoğdu E, Yildirim S, Aköz T. Is surgery an effective and adequate treatment in advanced Marjolin’s ulcer? Burns. 2005;31:421–31.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Copcu E. Marjolin’s ulcer: a preventable complication of burns? Plast Reconstr Surg. 2009;124:156e–64e.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Gul U, Kilic A. Squamous cell carcinoma developing on burn scar. Ann Plast Surg. 2006;56(4):406–8.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Pekarek B, Buck S, Osher LA. Comprehensive review on Marjolin’s ulcers: diagnosis and treatment. J Am Col Certif Wound Spec. 2011;3(3):60–4.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ogawa B, Chen M, Margolis J, Schiller FJ, Schnall SB. Marjolin’s ulcer arising at the elbow: a case report and literature review. Hand (N Y). 2006;1(2):89–93.CrossRefGoogle Scholar
  70. 70.
    Smith J, Mello LF, Nogueira Neto NC, Meohas W, Pinto LW, Campos VA, Barcellos MG, Fiod NJ, Rezende JF, Cabral CE. Malignancy in chronic ulcers and scars of the leg (Marjolin’s ulcer): a study of 21 patients. Skeletal Radiol. 2001;30(6):331–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kowal-Vern A, Criswell BK. Burn scar neoplasms: a literature review and statistical analysis. Burns. 2005;31:403–13.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Huang C, Ogawa R. Fibroproliferative disorders and their mechanobiology. Connect Tissue Res. 2012;53(3):187–96.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Huang C, Holfeld J, Schaden W, Orgill D, Ogawa R. Mechanotherapy: revisiting physical therapy and recruiting mechanobiology for a new era in medicine. Trends Mol Med. 2013;19(9):555–64.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chenyu Huang
    • 1
  • Longwei Liu
    • 2
  • Zhifeng You
    • 2
  • Zhaozhao Wu
    • 2
  • Yanan Du
    • 2
  • Rei Ogawa
    • 3
  1. 1.Department of DermatologyBeijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua UniversityBeijingChina
  2. 2.Department of Biomedical EngineeringSchool of Medicine, Tsinghua UniversityBeijingChina
  3. 3.Department of Plastic, Reconstructive and Aesthetic SurgeryNippon Medical SchoolTokyoJapan

Personalised recommendations