Advertisement

Genetics of Scars and Keloids

  • Chao-Kai Hsu
  • Hsing-San Yang
  • John A. McGrathEmail author
Chapter

Abstract

Clinical, epidemiological, and experimental data suggest that genetics plays a role in the pathogenesis of keloids. In this chapter, we review the contribution of genetics to the pathobiology of keloids, including assessment of keloid-related syndromes, genetic linkage analyses, genome-wide association studies, individual fibrosis-related genes, and ongoing insights from genomic medicine. Collectively, the evidence improves understanding of the molecular basis of keloid formation, and indicates possible new strategies for prevention, diagnosis, and treatment.

Keywords

Keloid Scars Genetics Keloid-related syndromes Linkage analysis Genome-wide association study Single-nucleotide polymorphisms 

References

  1. 1.
    Tuan TL, Nichter LS. The molecular basis of keloid and hypertrophic scar formation. Mol Med Today. 1998;4(1):19–24.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lee JY, Yang CC, Chao SC, Wong TW. Histopathological differential diagnosis of keloid and hypertrophic scar. Am J Dermatopathol. 2004;26(5):379–84.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brissett AE, Sherris DA. Scar contractures, hypertrophic scars, and keloids. Facial Plast Surg. 2001;17(4):263–72.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Robles DT, Moore E, Draznin M, Berg D. Keloids: pathophysiology and management. Dermatol Online J. 2007;13(3):9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Gauglitz GG, Korting HC, Pavicic T, Ruzicka T, Jeschke MG. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies. Mol Med. 2011;17(1–2):113–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Al-Attar A, Mess S, Thomassen JM, Kauffman CL, Davison SP. Keloid pathogenesis and treatment. Plast Reconstr Surg. 2006;117(1):286–300.PubMedCrossRefGoogle Scholar
  8. 8.
    Butler PD, Longaker MT, Yang GP. Current progress in keloid research and treatment. J Am Coll Surg. 2008;206(4):731–41.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    He Y, Deng Z, Alghamdi M, Lu L, Fear MW, He L. From genetics to epigenetics: new insights into keloid scarring. Cell Prolif. 2017;50:e12326.CrossRefGoogle Scholar
  10. 10.
    Huang C, Murphy GF, Akaishi S, Ogawa R. Keloids and hypertrophic scars: update and future directions. Plast Reconstr Surg Glob Open. 2013;1(4):e25.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Berman B, Maderal A, Raphael B. Keloids and hypertrophic scars: pathophysiology, classification, and treatment. Dermatol Surg. 2017;43(Suppl 1):S3–S18.PubMedCrossRefGoogle Scholar
  12. 12.
    Hsu CK, Lin HH, Harn HI, Hughes MW, Tang MJ, Yang CC. Mechanical forces in skin disorders. J Dermatol Sci. 2018;90(3):232–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Ogawa R, Hsu CK. Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration. J Cell Mol Med. 2013;17(7):817–22.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Glass DA 2nd. current understanding of the genetic causes of keloid formation. J Investig Dermatol Symp Proc. 2017;18(2):S50–S3.PubMedCrossRefGoogle Scholar
  15. 15.
    Kelly AP. Keloids. Dermatol Clin. 1988;6(3):413–24.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    LeFlore IC. Misconceptions regarding elective plastic surgery in the black patient. J Natl Med Assoc. 1980;72(10):947–8.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ud-Din S, Bayat A. Strategic management of keloid disease in ethnic skin: a structured approach supported by the emerging literature. Br J Dermatol. 2013;169(Suppl 3):71–81.PubMedCrossRefGoogle Scholar
  18. 18.
    Child FJ, Fuller LC, Higgins EM, Du Vivier AW. A study of the spectrum of skin disease occurring in a black population in south-east London. Br J Dermatol. 1999;141(3):512–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Marneros AG, Norris JE, Olsen BR, Reichenberger E. Clinical genetics of familial keloids. Arch Dermatol. 2001;137(11):1429–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Omo-Dare P. Genetic studies on keloid. J Natl Med Assoc. 1975;67(6):428–32.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen Y, Gao JH, Liu XJ, Yan X, Song M. Characteristics of occurrence for Han Chinese familial keloids. Burns. 2006;32(8):1052–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Clark JA, Turner ML, Howard L, Stanescu H, Kleta R, Kopp JB. Description of familial keloids in five pedigrees: evidence for autosomal dominant inheritance and phenotypic heterogeneity. BMC Dermatol. 2009;9:8.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Phillips DI. Twin studies in medical research: can they tell us whether diseases are genetically determined? Lancet. 1993;341(8851):1008–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Bloom D. Multiple keloids in twin sisters. Arch Derm Syphilol. 1947;55(3):426.PubMedGoogle Scholar
  25. 25.
    Siraganian PA, Rubinstein JH, Miller RW. Keloids and neoplasms in the Rubinstein-Taybi syndrome. Med Pediatr Oncol. 1989;17(6):485–91.PubMedGoogle Scholar
  26. 26.
    van de Kar AL, Houge G, Shaw AC, de Jong D, van Belzen MJ, Peters DJ, et al. Keloids in Rubinstein-Taybi syndrome: a clinical study. Br J Dermatol. 2014;171(3):615–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Warner DR, Bhattacherjee V, Yin X, Singh S, Mukhopadhyay P, Pisano MM, et al. Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. Biochem Biophys Res Commun. 2004;324(1):70–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Korzus E. Rubinstein-Taybi syndrome and epigenetic alterations. Adv Exp Med Biol. 2017;978:39–62.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Diao JS, Xia WS, Yi CG, Wang YM, Li B, Xia W, et al. Trichostatin A inhibits collagen synthesis and induces apoptosis in keloid fibroblasts. Arch Dermatol Res. 2011;303(8):573–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Fitzgerald O'Connor EJ, Badshah II, Addae LY, Kundasamy P, Thanabalasingam S, Abioye D, et al. Histone deacetylase 2 is upregulated in normal and keloid scars. J Invest Dermatol. 2012;132(4):1293–6.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Russell SB, Russell JD, Trupin KM, Gayden AE, Opalenik SR, Nanney LB, et al. Epigenetically altered wound healing in keloid fibroblasts. J Invest Dermatol. 2010;130(10):2489–96.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Atwal PS, Blease S, Braxton A, Graves J, He W, Person R, et al. Novel X-linked syndrome of cardiac valvulopathy, keloid scarring, and reduced joint mobility due to filamin A substitution G1576R. Am J Med Genet A. 2016;170a(4):891–5.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sasaki A, Masuda Y, Ohta Y, Ikeda K, Watanabe K. Filamin associates with Smads and regulates transforming growth factor-beta signaling. J Biol Chem. 2001;276(21):17871–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175(1):8–26.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Burk CJ, Aber C, Connelly EA. Ehlers-Danlos syndrome type IV: keloidal plaques of the lower extremities, amniotic band limb deformity, and a new mutation. J Am Acad Dermatol. 2007;56(2 Suppl):S53–4.PubMedCrossRefGoogle Scholar
  36. 36.
    Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11(3):241–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Marneros AG, Norris JE, Watanabe S, Reichenberger E, Olsen BR. Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol. 2004;122(5):1126–32.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yan X, Gao JH, Chen Y, Song M, Liu XJ. Preliminary linkage analysis and mapping of keloid susceptibility locus in a Chinese pedigree. Zhonghua Zheng Xing Wai Ke Za Zhi. 2007;23(1):32–5.PubMedGoogle Scholar
  39. 39.
    Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363(2):166–76.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Nakashima M, Chung S, Takahashi A, Kamatani N, Kawaguchi T, Tsunoda T, et al. A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat Genet. 2010;42(9):768–71.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chung S, Nakashima M, Zembutsu H, Nakamura Y. Possible involvement of NEDD4 in keloid formation; its critical role in fibroblast proliferation and collagen production. Proc Jpn Acad Ser B Phys Biol Sci. 2011;87(8):563–73.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Vecchione A, Marchese A, Henry P, Rotin D, Morrione A. The Grb10/Nedd4 complex regulates ligand-induced ubiquitination and stability of the insulin-like growth factor I receptor. Mol Cell Biol. 2003;23(9):3363–72.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Daian T, Ohtsuru A, Rogounovitch T, Ishihara H, Hirano A, Akiyama-Uchida Y, et al. Insulin-like growth factor-I enhances transforming growth factor-beta-induced extracellular matrix protein production through the P38/activating transcription factor-2 signaling pathway in keloid fibroblasts. J Invest Dermatol. 2003;120(6):956–62.PubMedCrossRefGoogle Scholar
  44. 44.
    Ishihara H, Yoshimoto H, Fujioka M, Murakami R, Hirano A, Fujii T, et al. Keloid fibroblasts resist ceramide-induced apoptosis by overexpression of insulin-like growth factor I receptor. J Invest Dermatol. 2000;115(6):1065–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Yoshimoto H, Ishihara H, Ohtsuru A, Akino K, Murakami R, Kuroda H, et al. Overexpression of insulin-like growth factor-1 (IGF-I) receptor and the invasiveness of cultured keloid fibroblasts. Am J Pathol. 1999;154(3):883–9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Zhu F, Wu B, Li P, Wang J, Tang H, Liu Y, et al. Association study confirmed susceptibility loci with keloid in the Chinese Han population. PLoS One. 2013;8(5):e62377.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ogawa R, Watanabe A, Than Naing B, Sasaki M, Fujita A, Akaishi S, et al. Associations between keloid severity and single-nucleotide polymorphisms: importance of rs8032158 as a biomarker of keloid severity. J Invest Dermatol. 2014;134(7):2041–3.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Shriner D. Overview of admixture mapping. Curr Protoc Hum Genet. 2013;Chapter 1:Unit 1.23.Google Scholar
  49. 49.
    Velez Edwards DR, Tsosie KS, Williams SM, Edwards TL, Russell SB. Admixture mapping identifies a locus at 15q21.2-22.3 associated with keloid formation in African Americans. Hum Genet. 2014;133(12):1513–23.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hsu CK, Lin HH, Harn HI, Ogawa R, Wang YK, Ho YT, et al. Caveolin-1 controls hyperresponsiveness to mechanical stimuli and fibrogenesis-associated RUNX2 activation in keloid fibroblasts. J Invest Dermatol. 2018;138(1):208–18.PubMedCrossRefGoogle Scholar
  51. 51.
    Harn HI, Hsu CK, Wang YK, Huang YW, Chiu WT, Lin HH, et al. Spatial distribution of filament elasticity determines the migratory behaviors of a cell. Cell Adh Migr. 2016;10(4):368–77.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Harn HI, Wang YK, Hsu CK, Ho YT, Huang YW, Chiu WT, et al. Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts. Exp Dermatol. 2015;24(8):579–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Shih B, Bayat A. Comparative genomic hybridisation analysis of keloid tissue in Caucasians suggests possible involvement of HLA-DRB5 in disease pathogenesis. Arch Dermatol Res. 2012;304(3):241–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Shih B, Bayat A. Genetics of keloid scarring. Arch Dermatol Res. 2010;302(5):319–39.PubMedCrossRefGoogle Scholar
  55. 55.
    Brown JJ, Bayat A. Genetic susceptibility to raised dermal scarring. Br J Dermatol. 2009;161(1):8–18.PubMedCrossRefGoogle Scholar
  56. 56.
    Brown JJ, Ollier WE, Thomson W, Bayat A. Positive association of HLA-DRB1∗15 with keloid disease in Caucasians. Int J Immunogenet. 2008;35(4-5):303–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Brown JJ, Ollier W, Arscott G, Ke X, Lamb J, Day P, et al. Genetic susceptibility to keloid scarring: SMAD gene SNP frequencies in Afro-Caribbeans. Exp Dermatol. 2008;17(7):610–3.PubMedCrossRefGoogle Scholar
  58. 58.
    He S, Liu X, Yang Y, Huang W, Xu S, Yang S, et al. Mechanisms of transforming growth factor beta(1)/Smad signalling mediated by mitogen-activated protein kinase pathways in keloid fibroblasts. Br J Dermatol. 2010;162(3):538–46.PubMedCrossRefGoogle Scholar
  59. 59.
    Emami A, Halim AS, Salahshourifar I, Yussof SJ, Khoo TL, Kannan TP. Association of TGFbeta1 and SMAD4 variants in the etiology of keloid scar in the Malay population. Arch Dermatol Res. 2012;304(7):541–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW. Genetic susceptibility to keloid disease and transforming growth factor beta 2 polymorphisms. Br J Plast Surg. 2002;55(4):283–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW. Genetic susceptibility to keloid disease and hypertrophic scarring: transforming growth factor beta1 common polymorphisms and plasma levels. Plast Reconstr Surg. 2003;111(2):535–43. discussion 44-6.PubMedCrossRefGoogle Scholar
  62. 62.
    Bayat A, Bock O, Mrowietz U, Ollier WE, Ferguson MW. Genetic susceptibility to keloid disease: transforming growth factor beta receptor gene polymorphisms are not associated with keloid disease. Exp Dermatol. 2004;13(2):120–4.PubMedCrossRefGoogle Scholar
  63. 63.
    Bayat A, Walter JM, Bock O, Mrowietz U, Ollier WE, Ferguson MW. Genetic susceptibility to keloid disease: mutation screening of the TGFbeta3 gene. Br J Plast Surg. 2005;58(7):914–21.PubMedCrossRefGoogle Scholar
  64. 64.
    Tu Y, Lineaweaver WC, Zhang F. TGF-beta1-509C/T polymorphism and susceptibility to keloid disease: a systematic review and meta-analysis. Scars Burn Heal. 2017;3:2059513117709943.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Saed GM, Ladin D, Olson J, Han X, Hou Z, Fivenson D. Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand conformational polymorphism and DNA sequencing. Arch Dermatol. 1998;134(8):963–7.PubMedCrossRefGoogle Scholar
  66. 66.
    Yan L, Lu XY, Wang CM, Cao R, Yin YH, Jia CS, et al. Association between p53 gene codon 72 polymorphism and keloid in Chinese population. Zhonghua Zheng Xing Wai Ke Za Zhi. 2007;23(5):428–30.PubMedGoogle Scholar
  67. 67.
    Santos-Cortez RLP, Hu Y, Sun F, Benahmed-Miniuk F, Tao J, Kanaujiya JK, et al. Identification of ASAH1 as a susceptibility gene for familial keloids. Eur J Hum Genet. 2017;25(10):1155–61.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Huang WC, Chen CL, Lin YS, Lin CF. Apoptotic sphingolipid ceramide in cancer therapy. J Lipids. 2011;2011:565316.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Coant N, Sakamoto W, Mao C, Hannun YA. Ceramidases, roles in sphingolipid metabolism and in health and disease. Adv Biol Regul. 2017;63:122–31.PubMedCrossRefGoogle Scholar
  70. 70.
    Chu Y, Corey DR. RNA sequencing: platform selection, experimental design, and data interpretation. Nucleic Acid Ther. 2012;22(4):271–4.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Onoufriadis A, Hsu CK, Ainali C, Ung CY, Rashidghamat E, Yang HS, et al. Time series integrative analysis of RNA sequencing and microRNA expression data reveals key biologic wound healing pathways in keloid-prone individuals. J Invest Dermatol. 2018;138:2690–3.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Zhang G, Jiang J, Luo S, Tang S, Liang J, Yao P. Analyses of CDC2L1 gene mutations in keloid tissue. Clin Exp Dermatol. 2012;37(3):277–83.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chao-Kai Hsu
    • 1
    • 2
  • Hsing-San Yang
    • 1
  • John A. McGrath
    • 3
    Email author
  1. 1.Department of DermatologyNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
  2. 2.International Center for Wound Repair and Regeneration (iWRR)National Cheng Kung UniversityTainanTaiwan
  3. 3.St John’s Institute of Dermatology, School of Basic and Medical Biosciences, King’s College London, Guy’s HospitalLondonUK

Personalised recommendations