Carbon Dioxide Enrichment and Crop Productivity

  • Mukhtar AhmedEmail author
  • Shakeel Ahmad


Photorespiration (oxidative photosynthetic carbon cycle) is a process in which photosynthates burn down due to oxidative action of RUBISCO. This led to 25% reduction in photosynthetic output. However, e[CO2] can inhibit this reaction resulting to the minimum loss of carbon also known as CO2 fertilization.


Carbon dioxide (CO2Free-Air Carbon dioxide Enrichment (FACE) Photorespiration CO2 fertilization 


  1. Ahmed M, Stöckle CO, Nelson R, Higgins S, Ahmad S, Raza MA (2019) Novel multimodel ensemble approach to evaluate the sole effect of elevated CO2 on winter wheat productivity. Sci Rep 9:7813PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165(2):351–372PubMedCrossRefGoogle Scholar
  3. Ainsworth EA, Rogers A, Vodkin LO, Walter A, Schurr U (2006) The effects of elevated CO2 concentration on soybean gene expression. An analysis of growing and mature leaves. Plant Physiol 142:135–147PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270PubMedCrossRefGoogle Scholar
  5. Ainsworth EA, Beier C, Calfapietra C, Ceulemans R, Durand-Tardif M, Farquhar GD, Godbold DL, Hendrey GR, Hickler T, Kaduk J, Karnosky DF, Kimball BA, KÖRner C, Koornneef M, Lafarge T, Leakey ADB, Lewin KF, Long SP, Manderscheid R, McNeil DL, Mies TA, Miglietta F, Morgan JA, Nagy J, Norby RJ, Norton RM, Percy KE, Rogers A, Soussana J-F, Stitt M, Weigel H-J, White JW (2008a) Next generation of elevated [CO2] experiments with crops: a critical investment for feeding the future world. Plant Cell Environ 31(9):1317–1324PubMedCrossRefGoogle Scholar
  6. Ainsworth EA, Leakey ADB, Ort DR, Long SP (2008b) FACE-ing the facts: inconsistencies and interdependence among field, chamber and modeling studies of elevated [CO2] impacts on crop yield and food supply. New Phytol 179(1):5–9PubMedCrossRefGoogle Scholar
  7. Anwar MR, O’Leary G, McNeil D, Hossain H, Nelson R (2007) Climate change impact on rainfed wheat in South-Eastern Australia. Field Crop Res 104(1–3):139–147CrossRefGoogle Scholar
  8. Assmann SM (1999) The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ 22(6):629–637CrossRefGoogle Scholar
  9. Calvo OC, Franzaring J, Schmid I, Müller M, Brohon N, Fangmeier A (2017) Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob Chang Biol 23(3):1292–1304PubMedCrossRefGoogle Scholar
  10. Carter T, Jones RN, Lu X, Bhadwal S, Conde C, Mearns L, O’Neill B, Rounsevell M, Zurek M (2007) New assessment methods and the characterisation of future conditions. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds.), Contribution of working group ii to the fourth assessment report of the intergovernmental panel on climate change 2007. Cambridge University Press, Cambridge, pp. 133–171Google Scholar
  11. Cohen I, Rapaport T, Berger RT, Rachmilevitch S (2018) The effects of elevated CO2 and nitrogen nutrition on root dynamics. Plant Sci 272:294–300PubMedCrossRefGoogle Scholar
  12. Cure JD, Acock B (1986) Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol 38(1–3):127–145CrossRefGoogle Scholar
  13. Dong J, Gruda N, Lam SK, Li X, Duan Z (2018) Effects of elevated CO2 on nutritional quality of vegetables: a review. Front Plant Sci 9:924PubMedPubMedCentralCrossRefGoogle Scholar
  14. Drigo B, Kowalchuk G, van Veen J (2008) Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biol Fertil Soils 44(5):667–679CrossRefGoogle Scholar
  15. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G (2007) Changes in atmospheric constituents and in radiative forcing. Chapter 2. In: Climate change 2007. The physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  16. Guo J, Zhang M-Q, Wang X-W, Zhang W-J (2015) A possible mechanism of mineral responses to elevated atmospheric CO2 in rice grains. J Integr Agric 14(1):50–57CrossRefGoogle Scholar
  17. Habermann E, Dias de Oliveira EA, Contin DR, San Martin JAB, Curtarelli L, Gonzalez-Meler MA, Martinez CA (2019) Stomatal development and conductance of a tropical forage legume are regulated by elevated [CO2] under moderate warming. Front Plant Sci 10Google Scholar
  18. Hoogenboom G, Tsuji GY, Pickering NB, Curry RB, Jones JW, Singh U, Godwin DC (1995) Decision support system to study climate change impacts on crop production. In: Rosenzweig C (ed) Climate change and agriculture: analysis of potential international impacts. American Society of Agronomy, Madison, pp 51–75Google Scholar
  19. IPCC (2007) Climate change (2007) synthesis report. Summary for policymakersGoogle Scholar
  20. Jena UR, Swain DK, Hazra KK, Maiti MK (2018) Effect of elevated [CO2] on yield, intra-plant nutrient dynamics, and grain quality of rice cultivars in eastern India. J Sci Food Agric 98:5841PubMedCrossRefGoogle Scholar
  21. Krishnapriya V, Pandey R (2016) Root exudation index: screening organic acid exudation and phosphorus acquisition efficiency in soybean genotypes. Crop Pasture Sci 67(10):1096–1109CrossRefGoogle Scholar
  22. Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876PubMedCrossRefGoogle Scholar
  23. Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55(1):591–628PubMedCrossRefGoogle Scholar
  24. Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312(5782):1918–1921PubMedCrossRefGoogle Scholar
  25. Mollah M, Norton R, Huzzey J (2009) Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance. Crop Pasture Sci 60(8):697–707CrossRefGoogle Scholar
  26. Nguyen LM, Buttner MP, Cruz P, Smith SD, Robleto EA (2011) Effects of elevated atmospheric CO2 on rhizosphere soil microbial communities in a mojave desert ecosystem. J Arid Environ 75(10):917–925PubMedPubMedCentralCrossRefGoogle Scholar
  27. Nie M, Pendall E (2016) Do rhizosphere priming effects enhance plant nitrogen uptake under elevated CO2? Agric Ecosyst Environ 224:50–55CrossRefGoogle Scholar
  28. Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci 107(45):19368–19373PubMedCrossRefGoogle Scholar
  29. Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (2006) Managed ecosystems and CO2: case studies, processes, and perspectives. Springer, Berlin/New YorkCrossRefGoogle Scholar
  30. O’Leary GJ, Christy B, Nuttall J, Huth N, Cammarano D, Stöckle C, Basso B, Shcherbak I, Fitzgerald G, Luo Q, Farre-Codina I, Palta J, Asseng S (2015) Response of wheat growth, grain yield and water use to elevated CO2 under a free-air CO2 enrichment (FACE) experiment and modelling in a semi-arid environment. Glob Chang Biol 21(7):2670–2687PubMedPubMedCentralCrossRefGoogle Scholar
  31. Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K (2001) Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol 150(2):251–260CrossRefGoogle Scholar
  32. Pandey R, Lal MK, Vengavasi K (2018) Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus. Plant Cell Rep 37(9):1231–1244PubMedCrossRefGoogle Scholar
  33. Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G (2004) Effects of climate change on global food production under sres emissions and socio-economic scenarios. Glob Environ Chang 14(1):53–67CrossRefGoogle Scholar
  34. Phillips DA, Fox TC, Six J (2006) Root exudation (net efflux of amino acids) may increase rhizodeposition under elevated CO2. Glob Chang Biol 12(3):561–567CrossRefGoogle Scholar
  35. Rogers A, Gibon Y, Stitt M, Morgan PB, Bernacchi CJ, Ort DR, Long SP (2006) Increased c availability at elevated carbon dioxide concentration improves n assimilation in a legume. Plant Cell Environ 29(8):1651–1658PubMedCrossRefGoogle Scholar
  36. Rosenzweig C (1985) Potential CO2-induced climate effects on north american wheat-producing regions. Clim Chang 7(4):367–389CrossRefGoogle Scholar
  37. Rosenzweig C, Tubiello F (2007) Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitig Adapt Strateg Glob Chang 12(5):855–873CrossRefGoogle Scholar
  38. Rosenzweig C, Jones JW, Hatfield JL, Ruane AC, Boote KJ, Thorburn P, Antle JM, Nelson GC, Porter C, Janssen S, Asseng S, Basso B, Ewert F, Wallach D, Baigorria G, Winter JM (2013) The agricultural model intercomparison and improvement project (agmip): protocols and pilot studies. Agric For Meteorol 170:166–182CrossRefGoogle Scholar
  39. Ruane AC, Major DC, Yu WH, Alam M, Hussain SG, Khan AS, Hassan A, Hossain BMTA, Goldberg R, Horton RM, Rosenzweig C (2013) Multi-factor impact analysis of agricultural production in Bangladesh with climate change. Glob Environ Chang 23(1):338–350CrossRefGoogle Scholar
  40. Smith MR, Myers SS (2018) Impact of anthropogenic CO2 emissions on global human nutrition. Nat Clim Chang 8(9):834–839CrossRefGoogle Scholar
  41. Sulieman S, Thao N, Tran LSP (2015) Does elevated CO2 provide real benefits for n2-fixing leguminous symbioses? In: Sulieman S, Tran LSP (eds) Legume nitrogen fixation in a changing environment. Springer, Cham, pp 89–112Google Scholar
  42. Sun P, Mantri N, Lou H, Hu Y, Sun D, Zhu Y, Dong T, Lu H (2012) Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (fragaria × ananassa duch.) at two levels of nitrogen application. PLoS One 7(7):e41000PubMedPubMedCentralCrossRefGoogle Scholar
  43. Tausz M, Tausz-Posch S, Norton RM, Fitzgerald GJ, Nicolas ME, Seneweera S (2013) Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ Exp Bot 88:71–80CrossRefGoogle Scholar
  44. Tfaily MM, Hess NJ, Koyama A, Evans RD (2018) Elevated [CO2] changes soil organic matter composition and substrate diversity in an arid ecosystem. Geoderma 330:1–8CrossRefGoogle Scholar
  45. Tubiello FN, Ewert F (2002) Simulating the effects of elevated CO2 on crops: approaches and applications for climate change. Eur J Agron 18(1–2):57–74CrossRefGoogle Scholar
  46. Tubiello FN, Amthor JS, Boote KJ, Donatelli M, Easterling W, Fischer G, Gifford RM, Howden M, Reilly J, Rosenzweig C (2007) Crop response to elevated CO2 and world food supply: A comment on “food for though” by Long et al., Science 312:1918–1921, 2006. Eur J Agron 26(3):215–223CrossRefGoogle Scholar
  47. Webber AN, Nie G-Y, Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39(3):413–425PubMedCrossRefGoogle Scholar
  48. Xiong J, He Z, Shi S, Kent A, Deng Y, Wu L, Van Nostrand JD, Zhou J (2015) Elevated CO2 shifts the functional structure and metabolic potentials of soil microbial communities in a C4 agroecosystem. Sci Rep 5:9316PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zheng Y, Li F, Hao L, Yu J, Guo L, Zhou H, Ma C, Zhang X, Xu M (2019) Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean. BMC Plant Biol 19:255PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ziska LH (2008) Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. DNA Cell Biol 27(4):165–172PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Agricultural Research for Northern SwedenSwedish University of Agricultural SciencesUmeåSweden
  2. 2.Department of AgronomyPir Mehr Ali Shah Arid Agriculture UniversityRawalpindiPakistan
  3. 3.Department of Biological Systems EngineeringWashington State UniversityPullmanUSA
  4. 4.Department of AgronomyBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations