Advertisement

Pest Management for Agronomic Crops

  • Muhammad Razaq
  • Farhan Mahmood Shah
  • Shakeel AhmadEmail author
  • Muhammad Afzal
Chapter

Abstract

Agriculture is the main stay for many countries having agrarian economies in the world. Today there are major challenges to feed burgeoning population of the world. Among other causes of low productivity of agronomic crops, insect pests attack is also a major concern. However, under climate uncertainty, this issue has been much aggravated. This chapter focused that integrated pest management (IPM) proved to the best option to control insect pests of agronomic crops for increasing production and ultimately ensuring food security under climate change scenarios.

Keywords

Insect Pest Control Integrated pest management Cereals Oilseed Crops 

References

  1. Adhab MA, Schoelz JE (2015) Report of the turnip aphid, Lipaphis erysimi (Kaltenbach, 1843) from Missouri. USA J Plant Prot Res 55:327–328CrossRefGoogle Scholar
  2. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper FAO, RomeGoogle Scholar
  3. Ali A, Ahmad S, Ali H (2014) Effect of temperature on immature stages of small black ladybird beetle Stethorus punctum, Leconte (Coleoptera: Coccinillidae) and percent mortality. Entomologia Generalis 35:129–136CrossRefGoogle Scholar
  4. Ali A, Desneux N, Lu Y, Wu K (2018) Key aphid natural enemies showing positive effects on wheat yield through biocontrol services in northern China. Agric Ecosyst Environ 266:1–9CrossRefGoogle Scholar
  5. Amer M, Aslam M, Razaq M, Afzal M (2009) Lack of plant resistance against aphids, as indicated by their seasonal abundance in canola, Brassica napus (L.) in Southern Punjab, Pakistan. Pak J Bot 41:1043–1051Google Scholar
  6. Apple JL, Smith RF (1976) Integrated pest management. Springer, New YorkCrossRefGoogle Scholar
  7. Aslam M, Razaq M (2007) Arthropod fauna of Brassica napus and Brassica juncea from Southern Punjab (Pakistan). J Agric Urban Ent 24:49–50CrossRefGoogle Scholar
  8. Auld D, O’Keeffe L, Murray G, Smith J (1980) Diallel analyses of resistance to the adult pea leaf weevil in peas. Crop Sci 20:760–766CrossRefGoogle Scholar
  9. Aziz MA, Ahmad M, Nasir MF, Naeem M (2013) Efficacy of different neem (Azadirachta indica) products in comparison with imidacloprid against English grain aphid (Sitobion avenae) on wheat. Int J Agric Biol 15:279–284Google Scholar
  10. Baker GH, Tann CR, Fitt GP (2008) Production of Helicoverpa spp. (Lepidoptera, Noctuidae) from different refuge crops to accompany transgenic cotton plantings in eastern Australia. Aust J Agric Res 59:723–732CrossRefGoogle Scholar
  11. Bardner R, Fletcher K (1974) Insect infestations and their effects on the growth and yield of field crops: a review. Bull Entomol Res 64:141–160CrossRefGoogle Scholar
  12. Bardner R, Fletcher K, Griffiths D (1983) Chemical control of the pea and bean weevil, Sitona lineatus L., and subsequent effects on the yield of field beans Vicia faba L. J Agric Sci 101:71–80CrossRefGoogle Scholar
  13. Bottrell D, Schoenly K (2018) Integrated pest management for resource-limited farmers: challenges for achieving ecological, social and economic sustainability. J Agric Sci 156:408–426CrossRefGoogle Scholar
  14. Brookes G, Barfoot P (2017) Environmental impacts of genetically modified (GM) crop use 1996–2015: impacts on pesticide use and carbon emissions. GM Crops Food 8:117–147PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brown A, Pal K (1971) The nature and characterization of resistance. In: Brown AWA, Pal K (eds) Insecticide resistance in arthropods. Monograph series, vol 38. World Health Organization, Geneva, pp 9–44Google Scholar
  16. Cárcamo H, Vankosky M (2011) Managing the pea leaf weevil in field peas. Prairie Soils Crops 4:77–85Google Scholar
  17. Cárcamo H, Vankosky M (2013) Sitona spp. Germar, broad nose d Weevils (Coleoptera: Curculionidae) biological control programmes in Canada 2001–2012. In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001–2012. CABI, Croydon, pp 277–284CrossRefGoogle Scholar
  18. CáRcamo H, Herle C, Hervet V, Ottea J (2012) Greenhouse studies of thiamethoxam effects on pea leaf weevil, Sitona lineatus. J Insect Sci 12:151PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cárcamo HA, Herle CE, Lupwayi NZ (2015) Sitona lineatus (Coleoptera: Curculionidae) larval feeding on Pisum sativum L. affects soil and plant nitrogen. J Insect Sci 15:1–5CrossRefGoogle Scholar
  20. Cárcamo HA, Vankosky MA, Wijerathna A, Olfert OO, Meers SB, Evenden ML (2018) Progress toward integrated pest management of pea leaf weevil: a review. Ann Entomol Soc Am 111:144–153CrossRefGoogle Scholar
  21. Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321PubMedCrossRefGoogle Scholar
  22. Carrière Y et al (2004) Sources, sinks, and the zone of influence of refuges for managing insect resistance to Bt crops. Ecol Appl 14:1615–1623CrossRefGoogle Scholar
  23. Carrière Y, Ellers-Kirk C, Biggs RW, Nyboer ME, Unnithan GC, Dennehy TJ, Tabashnik BE (2006) Cadherin-based resistance to Bacillus thuringiensis cotton in hybrid strains of pink bollworm: fitness costs and incomplete resistance. J Econ Entomol 99:1925–1935PubMedCrossRefGoogle Scholar
  24. Carrière Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33:161–168PubMedCrossRefGoogle Scholar
  25. Castle SJ, Prabhaker N, Henneberry T (1999) Insecticide resistance and its management in cotton insects. Technical Inforamtion Section of the International Cotton Advisory CommitteeGoogle Scholar
  26. Catarino R, Ceddia G, Areal FJ, Park J (2015) The impact of secondary pests on Bacillus thuringiensis (Bt) crops. Plant Biotechnol J 13:601–612PubMedCrossRefGoogle Scholar
  27. Censier F, Chavalle S, San Martin y Gomez G, De Proft M, Bodson B (2016) Targeted control of the saddle gall midge, Haplodiplosis marginata (von Roser)(Diptera: Cecidomyiidae), and the benefits of good control of this pest to winter wheat yield. Pest Manag Sci 72:731–737PubMedCrossRefGoogle Scholar
  28. Chang GC, Rutledge CE, Biggam RC, Eigenbrode SD (2004) Arthropod diversity in peas with normal or reduced waxy bloom. J Insect Sci 4:18PubMedPubMedCentralCrossRefGoogle Scholar
  29. Charleston DS, Kfir R, Dicke M, Vet LE (2006) Impact of botanical extracts derived from Melia azedarach and Azadirachta indica on populations of Plutella xylostella and its natural enemies: a field test of laboratory findings. Biol Control 39:105–114CrossRefGoogle Scholar
  30. Chavalle S, Censier F, San Martin y Gomez G, De Proft M (2015) Protection of winter wheat against orange wheat blossom midge, Sitodiplosis mosellana (Géhin)(Diptera: Cecidomyiidae): efficacy of insecticides and cultivar resistance. Pest Manag Sci 71:783–790PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chiu Y et al (2015) Fruit and vegetable intake and their pesticide residues in relation to semen quality among men from a fertility clinic. Hum Reprod 30:1342–1351PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chiu Y-H et al (2018) Association between pesticide residue intake from consumption of fruits and vegetables and pregnancy outcomes among women undergoing infertility treatment with assisted reproductive technology. JAMA Intern Med 178:17–26PubMedCrossRefGoogle Scholar
  33. Coll M, Wajnberg E (2017) Environmental pest management: challenges for agronomists, ecologists, economists and policymakers. Wiley, Hoboken, p 448CrossRefGoogle Scholar
  34. Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400PubMedCrossRefGoogle Scholar
  35. Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69:637–660PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dysart R (1990) The introduction and recovery in the United States of Anaphes diana (Hymenoptera: Mymaridae), an egg parasite of Sitona weevils (Coleoptera: Curculionidae). Entomophaga 35:307–313CrossRefGoogle Scholar
  37. Eisenring M, Romeis J, Naranjo SE, Meissle M (2017) Multitrophic Cry-protein flow in a dual-gene Bt-cotton field. Agric Ecosyst Environ 247:283–289CrossRefGoogle Scholar
  38. El Bouhssini M, Street K, Joubi A, Ibrahim Z, Rihawi F (2009) Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet Resour Crop Evol 56:1065–1069CrossRefGoogle Scholar
  39. Ellsworth PC, Martinez-Carrillo JL (2001) IPM for Bemisia tabaci: a case study from North America. Crop Prot 20:853–869CrossRefGoogle Scholar
  40. Fabrick JA et al (2015) Multi-toxin resistance enables pink bollworm survival on pyramided Bt cotton. Sci Rep 5:16554PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fitt GP (2000) An Australian approach to IPM in cotton: integrating new technologies to minimise insecticide dependence. Crop Prot 19:793–800CrossRefGoogle Scholar
  42. Fitt G, Wilson L (2012) Integrated pest management for sustainable agriculture. In: Abrol DP, Shankar U (eds) Integrated pest management principles and practice. CABI, Cambridge, MA, pp 27–40CrossRefGoogle Scholar
  43. Forrester NW, Cahill M, Bird LJ, Layland JK (1993) Management of pyrethroid and endosulfan resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. Pyrethroid resistance: field resistance mechanisms. Bull Entomol Res 1:1–132CrossRefGoogle Scholar
  44. Frisbie RE, Reynolds HT, Adkisson PL, Smith RF (1994) Cotton insect pest management introduction to insect pest management. Wiley, New York, pp 421–468Google Scholar
  45. Gassmann AJ, Carrière Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54:147–163PubMedCrossRefGoogle Scholar
  46. Georghiou GP, Mellon RB (1983) Pesticide resistance in time and space. In: Pest resistance to pesticides. Springer, Boston, pp 1–46CrossRefGoogle Scholar
  47. Gray S, Bergstrom G, Vaughan R, Smith D, Kalb D (1996) Insecticidal control of cereal aphids and its impact on the epidemiology of the barley yellow dwarf luteoviruses. Crop Prot 15:687–697CrossRefGoogle Scholar
  48. Gu H, Fitt GP, Baker GH (2007) Invertebrate pests of canola and their management in Australia: a review. Aust J Entomol 46:231–243CrossRefGoogle Scholar
  49. Hashmi A, Hussain M, Ulfat M (1983) Insects pest complex of wheat crop. Pak J Zool 15:169–176Google Scholar
  50. Huang F, Andow DA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl 140:1–16CrossRefGoogle Scholar
  51. Hussain A, Razaq M, Zaka SM, Shahzad W, Mahmood K (2015) Effect of aphid infestation on photosynthesis, growth and yield of Brassica carinata A. Braun. Pak J Zool 47:1335–1340Google Scholar
  52. Inayatullah C, Ehsan-Ul-Haq MN, Chaudhry M (1993) Incidence of greenbug, Schizaphis graminum (Rondani)(Homoptera: Aphididae) in Pakistan and resistance in wheat against it. Int J Trop Insect Sci 14:247–254CrossRefGoogle Scholar
  53. Jackson DJ, Macdougall KS (1920) Bionomics of weevils of the genus Sitones injurious to leguminous crops in Britain. Ann Appl Biol 7:269–298CrossRefGoogle Scholar
  54. James C (2015) Global status of commercialized biotech/GM crops: 2014 ISAAA brief 49Google Scholar
  55. Janick J, Schery RW, Woods FW, Ruttan VW (1969) Plant science, an introduction to world crops. Freeman and Company, San FranciscoGoogle Scholar
  56. Jaronski ST (2018) Opportunities for microbial control of pulse crop pests. Ann Entomol Soc Am 111:228–237CrossRefGoogle Scholar
  57. Johnson DR (1982) Suppression of Heliothis spp. on cotton by using Bacillus thuringiensis, Baculovirus heliothis, and two feeding adjuvants. J Econ Entomol 75:207–210CrossRefGoogle Scholar
  58. Kannan H (1999) Population dynamics of the wheat aphid, Schizaphis graminum, (Rondani)(Homoptera, Aphididae) and its natural enemies in the field Sudan. J Agric Res 2:65–68Google Scholar
  59. Kennedy GG (2008) Integration of insect-resistant genetically modified crops within IPM programs. In: Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 1–26Google Scholar
  60. Kieckhefer R, Gellner J (1992) Yield losses in winter wheat caused by low-density cereal aphid populations. Agron J 84:180–183CrossRefGoogle Scholar
  61. Kindler S, Elliott N, Giles K, Royer T, Fuentes-Granados R, Tao F (2002) Effect of greenbugs (Homoptera: Aphididae) on yield loss of winter wheat. J Econ Entomol 95:89–95PubMedCrossRefGoogle Scholar
  62. King J (1981) Experiments for the control of pea and bean weevil (Sitona lineatus) in peas, using granular and liquid insecticides. In: 1981 British crop protection conference: pests and diseases (11th British insecticide and fungicide conference): proceedings, held at Hotel Metropole, Brighton, England, November 16–19, 1981. BCPC Publications, Croydon, pp 327–331Google Scholar
  63. Knodel JJ, Shrestha G (2018) Pulse crops: pest management of wireworms and cutworms in the Northern Great Plains of United States and Canada. Ann Entomol Soc Am 111:195–204CrossRefGoogle Scholar
  64. Kochhar SL (2016) Economic botany. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  65. Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270PubMedCrossRefGoogle Scholar
  66. Landis DA et al (2016) Demonstration of an integrated pest management program for wheat in Tajikistan. J Integr Pest Manag 7:1–9CrossRefGoogle Scholar
  67. Landona F, Levieux J, Huignard J, Rougon D, Taupin P (1995) Feeding activity of Sitona lineatus L.(Col., Curculionidae) on Pisum sativum L.(Leguminosae) during its imaginal life. J Appl Entomol 119:515–522CrossRefGoogle Scholar
  68. Leonard WH, Martin JH (1963) Cereal crops. The Macmillan Company, New YorkGoogle Scholar
  69. Loan C (1975) A review of haliday species of Microctonus [Hym.: Braconidae, Euphorinae]. Entomophaga 20:31–41CrossRefGoogle Scholar
  70. Lu Y et al (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154PubMedCrossRefPubMedCentralGoogle Scholar
  71. McEwen J et al (1981) The effects of irrigation, nitrogen fertilizer and the control of pests and pathogens on spring-sown field beans (Vicia faba L.) and residual effects on two following winter wheat crops. J Agric Sci 96:129–150CrossRefGoogle Scholar
  72. Michelbacher A, Bacon O (1952) Walnut insect and spider-mite control in northern California. J Econ Entomol 45:1020–1027CrossRefGoogle Scholar
  73. Mirande L, Desneux N, Haramboure M, Schneider MI (2015) Intraguild predation between an exotic and a native coccinellid in Argentina: the role of prey density. J Pest Sci 88:155–162CrossRefGoogle Scholar
  74. Mohan KS, Ravi KC, Suresh PJ, Sumerford D, Head GP (2016) Field resistance to the Bacillus thuringiensis protein Cry1Ac expressed in Bollgard® hybrid cotton in pink bollworm, Pectinophora gossypiella (Saunders), populations in India. Pest Manag Sci 72:738–746PubMedCrossRefPubMedCentralGoogle Scholar
  75. Naranjo SE (2010) Impacts of Bt transgenic cotton on integrated pest management. J Agric Food Chem 59:5842–5851PubMedCrossRefPubMedCentralGoogle Scholar
  76. Naranjo SE, Ellsworth PC (2009) Fifty years of the integrated control concept: moving the model and implementation forward in Arizona. Pest Manag Sci 65:1267–1286PubMedPubMedCentralCrossRefGoogle Scholar
  77. Nielsen B, Jensen T (1993) Spring dispersal of Sitona lineatus: the use of aggregation pheromone traps for monitoring. Entomol Exp Appl 66:21–30CrossRefGoogle Scholar
  78. Ordish G (1976) The constant pest. A short history of pests and their controlGoogle Scholar
  79. Osteen CD, Szmedra PI (1989) Agricultural pesticide use trends and policy issues. US Department of Agriculture, Economic Research ServiceGoogle Scholar
  80. Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:3113PubMedPubMedCentralCrossRefGoogle Scholar
  81. Perkins J (1982) Insects, experts and the insecticide crisis: the quest for new pest management strategies. Plenum, New YorkCrossRefGoogle Scholar
  82. Razaq M (2006) Toxicological responses of Helicoverpa armigera, Bemisia tabaci and Amrasca devastans from Pakistan to PBO and selected insecticides. Ph. D. thesis, Department of Entomology, University of Agriculture, Faisalabad, PakistanGoogle Scholar
  83. Razaq M, Abbas G, Farooq M, Aslam M, Athar H-u-R (2014) Effect of iInsecticidal application on aphid population, photosynthetic parameters and yield components of late sown varieties of canola, Brassica napus L. Pak J Zool 46:661–668Google Scholar
  84. Roshan L, Rohilla H (2007) Insect pests of pulses and their management. Nat J Plant Improv 9:67–81Google Scholar
  85. Rossing W, Daamen R, Jansen M (1994) Uncertainty analysis applied to supervised control of aphids and brown rust in winter wheat. Part 2. Relative importance of different components of uncertainty. Agric Syst 44:449–460CrossRefGoogle Scholar
  86. Royer T et al (2005) Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat. J Econ Entomol 98:95–102PubMedCrossRefGoogle Scholar
  87. Saeed R, Razaq M (2015) Effect of prey resource on the fitness of the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Pak J Zool 47:103–109Google Scholar
  88. Saeed R, Razaq M, Hardy IC (2015) The importance of alternative host plants as reservoirs of the cotton leaf hopper, Amrasca devastans, and its natural enemies. J Pest Sci 88:517–531CrossRefGoogle Scholar
  89. Shah FM, Razaq M, Ali A, Han P, Chen J (2017) Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan. PLoS One 12:e0184639PubMedPubMedCentralCrossRefGoogle Scholar
  90. Shahzad MW, Razaq M, Hussain A, Yaseen M, Afzal M, Mehmood MK (2013) Yield and yield components of wheat (Triticum aestivum L.) affected by aphid feeding and sowing time at Multan, Pakistan. Pak J Bot 45:2005–2011Google Scholar
  91. Shakeel M et al (2017) Environment polluting conventional chemical control compared to an environmentally friendly IPM approach for control of diamondback moth, Plutella xylostella (L.), in China: a review. Environ Sci Pollut Res 24:14537–14550CrossRefGoogle Scholar
  92. Shennan C, Pisani Gareau T, Sirrine J (2004) Agroecological approaches to pest management in the US. In: Pretty J (ed) The pesticide detox, solutions for safe agriculture. Earthscan Publications, London, pp 193–211Google Scholar
  93. Singh S, Emden HV (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278CrossRefGoogle Scholar
  94. Smith RL, Flint HM (1977) A bibliography of the cotton leafperforator, Bucculatrix thurberiella, and a related species, Bucculatrix gossypiella, that also feeds on cotton (Lepidoptera: Lyonetiidae). Bull ESA 23:195–198Google Scholar
  95. Stern V, Smith R, Van den Bosch R, Hagen K (1959) The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept. Hilgardia 29:81–101CrossRefGoogle Scholar
  96. Straub L et al (2016) Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc R Soc B 283:20160506PubMedCrossRefGoogle Scholar
  97. Tabashnik BE, Van Rensburg J, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025PubMedCrossRefGoogle Scholar
  98. Tabashnik BE et al (2012) Sustained susceptibility of pink bollworm to Bt cotton in the United States. GM Crops Food 3:194–200PubMedCrossRefGoogle Scholar
  99. Tangtrakulwanich K, Reddy GV, Wu S, Miller JH, Ophus VL, Prewett J (2014) Developing nominal threshold levels for Phyllotreta cruciferae (Coleoptera: Chrysomelidae) damage on canola in Montana. USA Crop Prot 66:8–13CrossRefGoogle Scholar
  100. Thomas MB (1999) Ecological approaches and the development of “truly integrated” pest management. Proc Natl Acad Sci 96:5944–5951PubMedCrossRefGoogle Scholar
  101. Trapero C, Wilson IW, Stiller WN, Wilson LJ (2016) Enhancing integrated pest management in GM cotton systems using host plant resistance. Front Plant Sci 7:500PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tulisalo U, Markkula M (1970) Resistance of pea to the pea weevil Sitona lineatus (L.)(Col., Curculionidae). Ann Agric Fenn 9:139–141Google Scholar
  103. Van De Steene F, Vulsteke G, De Proft M, Callewaert D (1999) Seed coating to control the pea leaf weevil, Sitona lineatus (L.) in pea crops. J Plant Dis Prot 106:633–637Google Scholar
  104. Vankosky M, Dosdall L, Cárcamo H (2009) Distribution, biology and integrated management of the pea leaf weevil, Sitona lineatus L.(Coleoptera: Curculionidae), with an analysis of research needs. CAB Rev: Perspect Agric Vet Sci, Nutr Nat Res 4:1–18CrossRefGoogle Scholar
  105. Vankosky MA, Cárcamo HA, McKenzie RH, Dosdall LM (2011) Integrated management of Sitona lineatus with nitrogen fertilizer, rhizobium, and thiamethoxam insecticide. Agron J 103:565–572CrossRefGoogle Scholar
  106. Wang S, Qi Y, Desneux N, Shi X, Biondi A, Gao X (2017) Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. J Pest Sci 90:389–396CrossRefGoogle Scholar
  107. Weiss EA (1983) Oilseed crops. Longman Group Ltd., LondonGoogle Scholar
  108. Weiss MJ, Morrill WL (1992) Wheat stem sawfly (Hymenoptera: Cephidae) revisited. Am Entomol 38:241–245CrossRefGoogle Scholar
  109. White C, Eigenbrode S (2000) Effects of surface wax variation in Pisum sativum on herbivorous and entomophagous insects in the field. Environ Entomol 29:773–780CrossRefGoogle Scholar
  110. Whitehouse M et al (2014) Target and nontarget effects of novel “triple-stacked” Bt-transgenic cotton 1: canopy arthropod communities. Environ Entomol 43:218–241PubMedCrossRefPubMedCentralGoogle Scholar
  111. Williams L, Schotzko D, O’Keeffe L (1995) Pea leaf weevil herbivory on pea seedlings: effects on growth response and yield. Entomol Exp Appl 76:255–269CrossRefGoogle Scholar
  112. Wilson L, Mensah R, Fitt G (2004) Implementing integrated pest management in Australian cotton. In: Insect pest management. Springer, Berlin, pp 97–118CrossRefGoogle Scholar
  113. Wilson L, Downes S, Khan M, Whitehouse M, Baker G, Grundy P, Maas S (2013) IPM in the transgenic era: a review of the challenges from emerging pests in Australian cotton systems. Crop Pasture Sci 64:737–749CrossRefGoogle Scholar
  114. Wolf V, Dehoust J, Banse M (2018) World markets for cereal crops. In: Biokerosene. Springer, Heidelberg, pp 123–145CrossRefGoogle Scholar
  115. Yu Y et al (2018) Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013. BMC Public Health 18:91CrossRefGoogle Scholar
  116. Zvereva EL, Kozlov MV (2012) Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia 169:441–452PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Muhammad Razaq
    • 1
  • Farhan Mahmood Shah
    • 1
  • Shakeel Ahmad
    • 2
    Email author
  • Muhammad Afzal
    • 3
  1. 1.Department of EntomologyBahauddin Zakariya UniversityMultanPakistan
  2. 2.Department of AgronomyBahauddin Zakariya UniversityMultanPakistan
  3. 3.University College of AgricultureUniversity of SargodhaSargodhaPakistan

Personalised recommendations