Design and Optimization of MEMS Piezoelectric Cantilever for Vibration Energy Harvesting Application

  • Namrata GuptaEmail author
  • Abhishek Ray
  • Alok Naugarhiya
  • Abhinav Gupta
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 587)


This paper presents a reverse trapezoidal unimorph piezoelectric cantilever structure for frequency tuning and power optimization. A proof mass is incorporated at the upper side of the free end of the cantilever. The proposed cantilever structure with nonconventional geometry finds its application in vibration energy harvesting. The design is simulated with COMSOL Multiphysics 5.2 to convert mechanical energy into electrical energy. The proposed harvester is able to generate 1300 \(\upmu \)m displacement, 0.46V induced voltage, and 9 \(\upmu \)W induced electrical peak power at the low frequency of about 160 Hz at applied 1 g acceleration and 12 k\(\Omega \) optimal load resistance.


MEMS Piezoelectric material Cantilever Sensors 



The authors thank Visvesvaraya National Institute of Technology, Nagpur for giving support of simulating design in COMSOL Multiphysics software.


  1. 1.
    Ben Ayed, S., Abdelkefi, A., Najar, F., Hajj, M.R.: Design and performance of variable-shaped piezoelectric energy harvesters. J. Intell. Mater. Syst. Struct. 25(2), 174–186 (2014)CrossRefGoogle Scholar
  2. 2.
    Chen, N., Bedekar, V.: Modeling, simulation and optimization of piezoelectric bimorph transducer for broadband vibration energy harvesting in multi-beam and trapezoidal approach. J. Mater. Sci. Res. 7(2), 26 (2018)CrossRefGoogle Scholar
  3. 3.
    Costache, F., Pawlik, B., Rieck, A.: Development of a compact, low-frequency vibration, piezoelectric mems energy harvester. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 1, p. 588 (2017)CrossRefGoogle Scholar
  4. 4.
    Muthalif, A.G., Nordin, N.D.: Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech. Syst. Signal Process. 54, 417–426 (2015)CrossRefGoogle Scholar
  5. 5.
    Priya, S., Song, H.C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.G., Kanno, I., Wu, L., Ha, D.S., Ryu, J., et al.: A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest. Syst. 4(1), 3–39 (2017)CrossRefGoogle Scholar
  6. 6.
    Soliman, M., El-Saadany, E., Abdel-Rahman, E., Mansour, R.: Design and modeling of a wideband mems-based energy harvester with experimental verification. In: Microsystems and Nanoelectronics Research Conference. MNRC 2008, 1st edn. pp. 193–196. IEEE (2008)Google Scholar
  7. 7.
    Zhang, G., Gao, S., Liu, H., Niu, S.: A low frequency piezoelectric energy harvester with trapezoidal cantilever beam: theory and experiment. Microsyst. Technol. 23(8), 3457–3466 (2017)CrossRefGoogle Scholar
  8. 8.
    Zhou, W., Khaliq, A., Tang, Y., Ji, H., Selmic, R.R.: Simulation and design of piezoelectric microcantilever chemical sensors. Sens. Actuators A 125(1), 69–75 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Namrata Gupta
    • 1
    Email author
  • Abhishek Ray
    • 1
  • Alok Naugarhiya
    • 1
  • Abhinav Gupta
    • 2
  1. 1.National Institute of TechnologyRaipurIndia
  2. 2.Rajkiya Engineering CollegeSonbhadraIndia

Personalised recommendations