Imaging Connectomics and the Understanding of Brain Diseases

  • Andrea InsabatoEmail author
  • Gustavo Deco
  • Matthieu Gilson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)


Neuroimaging-based personalized medicine is emerging to characterize brain disorders and their evolution at the patient level. In this chapter, we present the most classic methods used to infer large-scale brain connectivity based on functional MRI. We adopt a modeling perspective where every connectivity measure is linked to a specific model that allows to interpret the connectivity estimate. This perspective allows to analyze the quality of retrieved connectivity profiles in terms of modeling error and estimation error. In the first part of the chapter, we present undirected functional connectivity (Pearson’s correlation and MI) and effective connectivity (partial correlation), as well as directed effective connectivity (VAR, MOU, Granger causality, DCM). In addition, some of these measures correspond to fully connected graphs (Pearson’s correlation) while others to sparse ones (MOU, DCM), where the sparsity can come from the integration of functional and structural data. In the second part, we claim that machine learning tools are better suited than null-hypothesis testing to link the estimated connectomes with diagnosis and prognosis of neuropsychiatric diseases. Finally, we propose that linear models and features selection are preferable to more complex and nonlinear tools (when prediction performance is on a par) for building interpretable algorithms to predict clinical variables.


Model-based connectivity Functional connectivity Effective connectivity Interpretable machine learning Whole-brain modeling 


  1. 1.
    Devanand DP, Pradhaban G, Liu X, Khandji A, De Santi S, Segal S, et al. Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology. 2007;68(11):828–36.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Greicius M. Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol. 2008;21(4):424.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hohenfeld C, Werner CJ, Reetz K. Resting-state connectivity in neurodegenerative disorders: is there potential for an imaging biomarker? NeuroImage Clin. 2018;18:849–70.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Schmahmann JD, Pandya DN. Cerebral white matter–historical evolution of facts and notions concerning the organization of the fiber pathways of the brain. J Hist Neurosci. 2007;16(3):237–67.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Sporns O, Tononi G, Kötter R. The human connectome: a structural description of the human brain. PLoS Comput Biol. 2005;1(4):e42.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6(7):e159.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gillebert CR, Mantini D. Functional connectivity in the normal and injured brain. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry. 2013;19(5):509–22.Google Scholar
  8. 8.
    Buckner RL. Human functional connectivity: new tools, unresolved questions. Proc Natl Acad Sci U S A. 2010;107(24):10769–70.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hlinka J, Palus M, Vejmelka M, Mantini D, Corbetta M. Functional connectivity in resting-state fMRI: is linear correlation sufficient? NeuroImage. 2011;54(3):2218–25.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cabral J, Hugues E, Sporns O, Deco G. Role of local network oscillations in resting-state functional connectivity. NeuroImage. 2011;57(1):130–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Cabral J, Vidaurre D, Marques P, Magalhães R, Silva Moreira P, Miguel Soares J, et al. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci Rep. 2017;7(1):5135.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Aertsen AM, Gerstein GL, Habib MK, Palm G. Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol. 1989;61(5):900–17.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Friston KJ. Functional and effective connectivity: a review. Brain Connect. 2011;1(1):13–36.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003;19(4):1273–302.PubMedCrossRefGoogle Scholar
  15. 15.
    Valdes-Sosa PA, Roebroeck A, Daunizeau J, Friston K. Effective connectivity: influence, causality and biophysical modeling. NeuroImage. 2011;58(2):339–61.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lafleur L-P, Tremblay S, Whittingstall K, Lepage J-F. Assessment of effective connectivity and plasticity with dual-coil transcranial magnetic stimulation. Brain Stimulat. 2016;9(3):347–55.CrossRefGoogle Scholar
  17. 17.
    Gilson M, Moreno-Bote R, Ponce-Alvarez A, Ritter P, Deco G. Estimation of directed effective connectivity from fMRI functional connectivity hints at asymmetries of cortical connectome. PLoS Comput Biol. 2016;12(3):e1004762.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Anscombe FJ. Graphs in statistical analysis. Am Stat. 1973;27(1):17–21.Google Scholar
  19. 19.
    Rousseeuw PJ, Leroy AM. Robust regression and outlier detection. Wiley; 1987 [cited 2018 Dec 31]. (Wiley series in probability and mathematical statistics. Applied probability and statistics).
  20. 20.
    Ledoit O, Wolf M. Nonlinear shrinkage estimation of large-dimensional covariance matrices. Ann Stat. 2012;40(2):1024–60.CrossRefGoogle Scholar
  21. 21.
    Bartz D, Müller K-R. Covariance shrinkage for autocorrelated data. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in neural information processing systems 27. Curran Associates, Inc.; 2014 [cited 2018 Dec 31]. p. 1592–1600.
  22. 22.
    Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432–41.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    MacKay DJC. Information theory, inference and learning algorithms. Cambridge University Press; 2003. 644 p.Google Scholar
  24. 24.
    Hartman D, Hlinka J, Paluš M, Mantini D, Corbetta M. The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos. 2011 [cited 2018 Oct 24];21(1). Scholar
  25. 25.
    Hyvärinen A, Zhang K, Shimizu S, Hoyer PO. Estimation of a structural vector autoregression model using non-gaussianity. J Mach Learn Res. 2010;11(May):1709–31.Google Scholar
  26. 26.
    Gates KM, Molenaar PCM, Hillary FG, Ram N, Rovine MJ. Automatic search for fMRI connectivity mapping: an alternative to granger causality testing using formal equivalences among SEM path modeling, VAR, and unified SEM. NeuroImage. 2010;50(3):1118–25.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Goebel R, Roebroeck A, Kim D-S, Formisano E. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn Reson Imaging. 2003;21(10):1251–61.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Insabato A, Cunningham JP, Gilson M. Bayesian estimation for large scale multivariate Ornstein-Uhlenbeck model of brain connectivity. ArXiv180510050 Cs Stat. 2018 May 25 [cited 2018 May 30].
  29. 29.
    Pallarés V, Insabato A, Sanjuán A, Kühn S, Mantini D, Deco G, et al. Extracting orthogonal subject- and condition-specific signatures from fMRI data using whole-brain effective connectivity. NeuroImage. 2018;1(178):238–54.CrossRefGoogle Scholar
  30. 30.
    Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37(3):424–38.CrossRefGoogle Scholar
  31. 31.
    Lütkepohl H. New introduction to multiple time series analysis. Berlin, Heidelberg: Springer; 2005 [cited 2018 Dec 31]. Scholar
  32. 32.
    Brovelli A, Chicharro D, Badier J-M, Wang H, Jirsa V. Characterization of cortical networks and corticocortical functional connectivity mediating arbitrary visuomotor mapping. J Neurosci. 2015;35(37):12643–58.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Frässle S, Lomakina EI, Kasper L, Manjaly ZM, Leff A, Pruessmann KP, et al. A generative model of whole-brain effective connectivity. NeuroImage. 2018;1(179):505–29.CrossRefGoogle Scholar
  34. 34.
    Li B, Wang X, Yao S, Hu D, Friston K. Task-dependent modulation of effective connectivity within the default mode network. Front Psychol. 2012;3:206.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bassett DS, Wymbs NF, Porter MA, Mucha PJ, Carlson JM, Grafton ST. Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci USA. 2011;108(18):7641–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Mitra A, Snyder AZ, Tagliazucchi E, Laufs H, Raichle ME. Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep. eLife. 2015;4:e10781.Google Scholar
  37. 37.
    Park H-J, Friston K. Structural and functional brain networks: from connections to cognition. Science. 2013;342(6158):1238411.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gonzalez-Castillo J, Hoy CW, Handwerker DA, Robinson ME, Buchanan LC, Saad ZS, et al. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc Natl Acad Sci. 2015;112(28):8762–7.PubMedCrossRefGoogle Scholar
  39. 39.
    Brovelli A, Badier J-M, Bonini F, Bartolomei F, Coulon O, Auzias G. Dynamic reconfiguration of visuomotor-related functional connectivity networks. J Neurosci. 2016;15:1672–16.Google Scholar
  40. 40.
    Hindriks R, Adhikari MH, Murayama Y, Ganzetti M, Mantini D, Logothetis NK, et al. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? NeuroImage. 2016;15(127):242–56.CrossRefGoogle Scholar
  41. 41.
    Park H-J, Friston KJ, Pae C, Park B, Razi A. Dynamic effective connectivity in resting state fMRI. NeuroImage. 2018;180(Pt B):594–608.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rahim M, Thirion B, Bzdok D, Buvat I, Varoquaux G. Joint prediction of multiple scores captures better individual traits from brain images. NeuroImage. 2017;1(158):145–54.CrossRefGoogle Scholar
  43. 43.
    Meskaldji D-E, Preti MG, Bolton TA, Montandon M-L, Rodriguez C, Morgenthaler S, et al. Prediction of long-term memory scores in MCI based on resting-state fMRI. NeuroImage Clin. 2016;12:785–95.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gao S, Calhoun VD, Sui J. Machine learning in major depression: from classification to treatment outcome prediction. CNS Neurosci Ther. 2018;24(11):1037–52.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, et al. Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2013;16(4):98–111.Google Scholar
  46. 46.
    Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med. 2017;23(1):28–38.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Dinga R, Schmaal L, Penninx B, Tol MJ van, Veltman D, Velzen L van, et al. Evaluating the evidence for biotypes of depression: attempted replication of Drysdale et al. 2017. bioRxiv. 2018 Sep 14;416321.Google Scholar
  48. 48.
    Wagenmakers E-J. A practical solution to the pervasive problems ofp values. Psychon Bull Rev. 2007;14(5):779–804.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. Vol. 1. In: Springer series in statistics New York, NY, USA; 2001.Google Scholar
  50. 50.
    Varoquaux G. Cross-validation failure: small sample sizes lead to large error bars. NeuroImage. 2017 [cited 2018 Feb 18].
  51. 51.
    Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage. 2017;15(145):137–65.CrossRefGoogle Scholar
  52. 52.
    Varoquaux G, Raamana PR, Engemann DA, Hoyos-Idrobo A, Schwartz Y, Thirion B. Assessing and tuning brain decoders: cross-validation, caveats, and guidelines. NeuroImage. 2017;15(145):166–79.CrossRefGoogle Scholar
  53. 53.
    Sarica A, Cerasa A, Quattrone A. Random forest algorithm for the classification of neuroimaging data in Alzheimer’s disease: a systematic review. Front Aging Neurosci. 2017 [cited 2018 Feb 23];9.
  54. 54.
    Vieira S, Pinaya WHL, Mechelli A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci Biobehav Rev. 2017;1(74):58–75.CrossRefGoogle Scholar
  55. 55.
    Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn. 2002;46(1):389–422.CrossRefGoogle Scholar
  56. 56.
    Roffo G, Melzi S, Cristani M. Infinite feature selection. In: 2015 IEEE international conference on computer vision (ICCV); 2015. p. 4202–10.Google Scholar
  57. 57.
    Roffo G, Melzi S, Castellani U, Vinciarelli A. Infinite latent feature selection: a probabilistic latent graph-based ranking approach. In 2017 [cited 2018 Nov 13]. p. 1398–406.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Andrea Insabato
    • 1
    Email author
  • Gustavo Deco
    • 2
  • Matthieu Gilson
    • 3
  1. 1.Institut de Neurosciences de la TimoneUMR CNRS 7289, Aix Marseille UniversityMarseilleFrance
  2. 2.Institució Catalana de la Recerca i Estudis Avanats (ICREA), Universitat Pompeu FabraBarcelonaSpain
  3. 3.Theoretical and Computational Neuroscience, Center for Brain and CognitionUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations