Advertisement

Genetic Markers in Psychiatry

  • Gordana Nedic Erjavec
  • Dubravka Svob Strac
  • Lucija Tudor
  • Marcela Konjevod
  • Marina Sagud
  • Nela PivacEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)

Abstract

Psychiatric disorders such as addiction (substance use and addictive disorders), depression, eating disorders, schizophrenia, and post-traumatic stress disorder (PTSD) are severe, complex, multifactorial mental disorders that carry a high social impact, enormous public health costs, and various comorbidities as well as premature morbidity. Their neurobiological foundation is still not clear. Therefore, it is difficult to uncover new set of genes and possible genetic markers of these disorders since the understanding of the molecular imbalance leading to these disorders is not complete. The integrative approach is needed which will combine genomics and epigenomics; evaluate epigenetic influence on genes and their influence on neuropeptides, neurotransmitters, and hormones; examine gene × gene and gene × environment interplay; and identify abnormalities contributing to development of these disorders. Therefore, novel genetic approaches based on systems biology focused on improvement of the identification of the biological underpinnings might offer genetic markers of addiction, depression, eating disorders, schizophrenia, and PTSD. These markers might be used for early prediction, detection of the risk to develop these disorders, novel subtypes of the diseases and tailored, personalized approach to therapy.

Keywords

Addiction Depression Eating disorders Schizophrenia Genetics Markers PTSD 

References

  1. 1.
    American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Washington: American Psychiatric Association; 2013.CrossRefGoogle Scholar
  2. 2.
    World Health Organization. The ICD-10 classification of mental and behavioral disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992.Google Scholar
  3. 3.
    Duncan LE, Cooper BN, Shen H. Robust findings from 25 years of PSTD genetics research. Curr Psychiatry Rep. 2018;20(12):115.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    McMahon FJ. Population-based estimates of heritability shed new light on clinical features of major depression. Am J Psychiatry. 2018;175(11):1058–60.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Docherty AR, Moscati AA, Fanous AH. Cross-disorder psychiatric genomics. Curr Behav Neurosci Rep. 2016;3(3):256–63.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet. 2003;123C(1):48–58.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Barnett JH, Smoller JW. The genetics of bipolar disorder. Neuroscience. 2009;164(1):331–43.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Gejman PV, Sanders AR, Duan J. The role of genetics in the etiology of schizophrenia. Psychiatr Clin North Am. 2010;33(1):35–66.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Guffanti G, Gameroff MJ, Warner V, Talati A, Glatt CE, Wickramaratne P, Weissman MM. Heritability of major depressive and comorbid anxiety disorders in multi-generational families at high risk for depression. Am J Med Genet B Neuropsychiatr Genet. 2016;171(8):1072–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hettema JM, Neale MC, Kendler KS. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry. 2001;158(10):1568–78.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Browne HA, Gair SL, Scharf JM, Grice DE. Genetics of obsessive-compulsive disorder and related disorders. Psychiatr Clin North Am. 2014;37(3):319–35.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Thornton LM, Mazzeo SE, Bulik CM. The heritability of eating disorders: methods and current findings. Curr Top Behav Neurosci. 2011;6:141–56.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pivac N, Kim B, Nedic G, Joo YH, Kozaric-Kovacic D, Hong JP, et al. Ethnic differences in brain-derived neurotrophic factor Val66Met polymorphism in Croatian and Korean healthy participants. Croat Med J. 2009;50(1):43–8.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Noskova T, Pivac N, Nedic G, Kazantseva A, Gaysina D, Faskhutdinova G, et al. Ethnic differences in the serotonin transporter polymorphism (5-HTTLPR) in several European populations. Progr Neuro-Psychopharmacol Biol Psychiatry. 2008;32(7):1735–9.CrossRefGoogle Scholar
  15. 15.
    Sivakumaran S, Agakov F, Theodoratou E, Prendergast JG, Zgaga L, Manolio T, et al. Abundant pleiotropy in human complex diseases and traits. Am J Hum Genet. 2011;89(5):607–18.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic address: douglas.ruderfer@vanderbilt.edu; Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173(7):1705–15.e16.Google Scholar
  17. 17.
    Koob GF. The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction. 2006;101(Suppl 1):23–30.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Merikangas KR, Avenevoli S. Implications of genetic epidemiology for the prevention of substance use disorders. Addict Behav. 2000;25(6):807–20.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Tsuang MT, Lyons MJ, Eisen SA, Goldberg J, True W, Lin N, et al. Genetic influences on DSM-III-R drug abuse and dependence: a study of 3,372 twin pairs. Am J Med Genet. 1996;67(5):473–7.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Heath AC, Bucholz KK, Madden PA, Dinwiddie SH, Slutske WS, Bierut LJ, et al. Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychol Med. 1997;27(6):1381–96.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Bierut LJ, Dinwiddie SH, Begleiter H, Crowe RR, Hesselbrock V, Nurnberger JI Jr, et al. Familial transmission of substance dependence: alcohol, marijuana, cocaine, and habitual smoking: a report from the collaborative study on the genetics of alcoholism. Arch Gen Psychiatry. 1998;55(11):982–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kendler KS, Karkowski LM, Neale MC, Prescott CA. Illicit psychoactive substance use, heavy use, abuse, and dependence in a US population-based sample of male twins. Arch Gen Psychiatry. 2000;57(3):261–9.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Li MD, Cheng R, Ma JZ, Swan GE. A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. Addiction. 2003;98(1):23–31.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Nielsen DA, Ji F, Yuferov V, Ho A, Chen A, Levran O, et al. Genotype patterns that contribute to increased risk for or protection from developing heroin addiction. Mol Psychiatry. 2008;13(4):417–28.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Nielsen DA, Ji F, Yuferov V, Ho A, He C, Ott J, et al. Genome-wide association study identifies genes that may contribute to risk for developing heroin addiction. Psychiatr Genet. 2010;20(5):207–14.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gelernter J, Kranzler HR, Sherva R, Koesterer R, Almasy L, Zhao H, et al. Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol Psychiatry. 2014;76(1):66–74.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Cheng Z, Zhou H, Sherva R, Farrer LA, Kranzler HR, Gelernter J. Genome-wide association study identifies a regulatory variant of RGMA associated with opioid dependence in European Americans. Biol Psychiatry. 2018;84(10):762–70.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Bierut LJ, Madden PA, Breslau N, Johnson EO, Hatsukami D, Pomerleau OF, et al. Novel genes identified in a high-density genome wide association study for nicotine dependence. Hum Mol Genet. 2007;16(1):24–35.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Bierut LJ, Agrawal A, Bucholz KK, Doheny KF, Laurie C, Pugh E, et al. A genome-wide association study of alcohol dependence. Proc Natl Acad Sci USA. 2010;107(11):5082–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Schumann G, Coin LJ, Lourdusamy A, Charoen P, Berger KH, Stacey D, et al. Genome-wide association and genetic functional studies identify autism susceptibility candidate 2 gene (AUTS2) in the regulation of alcohol consumption. Proc Natl Acad Sci USA. 2011;108(17):7119–24.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kroslak T, Laforge KS, Gianotti RJ, Ho A, Nielsen DA, Kreek MJ. The single nucleotide polymorphism A118G alters functional properties of the human mu opioid receptor. J Neurochem. 2007;103(1):77–87.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Oertel BG, Kettner M, Scholich K, Renne C, Roskam B, Geisslinger G, et al. A common human micro-opioid receptor genetic variant diminishes the receptor signaling efficacy in brain regions processing the sensory information of pain. J Biol Chem. 2009;284(10):6530–5.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kumar D, Chakraborty J, Das S. Epistatic effects between variants of kappa-opioid receptor gene and A118G of mu-opioid receptor gene increase susceptibility to addiction in Indian population. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(2):225–30.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nikolov MA, Beltcheva O, Galabova A, Ljubenova A, Jankova E, Gergov G, et al. No evidence of association between 118A > G OPRM1 polymorphism and heroin dependence in a large Bulgarian case-control sample. Drug Alcohol Depend. 2011;117(1):62–5.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hancock DB, Levy JL, Gaddis NC, Glasheen C, Saccone NL, Page GP, et al. Cis-Expression quantitative trait loci mapping reveals replicable associations with heroin addiction in OPRM1. Biol Psychiatry. 2015;78(7):474–84.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Levran O, Londono D, O’Hara K, Nielsen DA, Peles E, Rotrosen J, et al. Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav. 2008;7(7):720–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Beer B, Erb R, Pavlic M, Ulmer H, Giacomuzzi S, Riemer Y, et al. Association of polymorphisms in pharmacogenetic candidate genes (OPRD1, GAL, ABCB1, OPRM1) with opioid dependence in European population: a case-control study. PLoS ONE. 2013;8(9):e75359.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nelson EC, Lynskey MT, Heath AC, Wray N, Agrawal A, Shand FL, et al. Association of OPRD1 polymorphisms with heroin dependence in a large case-control series. Addict Biol. 2014;19(1):111–21.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Randesi M, van den Brink W, Levran O, Blanken P, Butelman ER, Yuferov V, et al. Variants of opioid system genes are associated with non-dependent opioid use and heroin dependence. Drug Alcohol Depend. 2016;168:164–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Vereczkei A, Demetrovics Z, Szekely A, Sarkozy P, Antal P, Szilagyi A, et al. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS ONE. 2013;8(6):e66592.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Tsou CC, Chou HW, Ho PS, Kuo SC, Chen CY, Huang CC, et al. DRD2 and ANKK1 genes associate with late-onset heroin dependence in men. World J Biol Psychiatry. 2017:1–11.Google Scholar
  43. 43.
    Jia W, Shi JG, Wu B, Ao L, Zhang R, Zhu YS. Polymorphisms of brain-derived neurotrophic factor associated with heroin dependence. Neurosci Lett. 2011;495(3):221–4.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cheng CY, Hong CJ, Yu YW, Chen TJ, Wu HC, Tsai SJ. Brain-derived neurotrophic factor (Val66Met) genetic polymorphism is associated with substance abuse in males. Brain Res Mol Brain Res. 2005;140(1–2):86–90.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Nedic G, Perkovic MN, Sviglin KN, Muck-Seler D, Borovecki F, Pivac N. Brain-derived neurotrophic factor Val66Met polymorphism and alcohol-related phenotypes. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:193–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Edenberg HJ. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health. 2007;30(1):5–13.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Chen CC, Lu RB, Chen YC, Wang MF, Chang YC, Li TK, et al. Interaction between the functional polymorphisms of the alcohol-metabolism genes in protection against alcoholism. Am J Hum Genet. 1999;65(3):795–807.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bierut LJ, Goate AM, Breslau N, Johnson EO, Bertelsen S, Fox L, et al. ADH1B is associated with alcohol dependence and alcohol consumption in populations of European and African ancestry. Mol Psychiatry. 2012;17(4):445–50.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tammimaki AE, Mannisto PT. Are genetic variants of COMT associated with addiction? Pharmacogenet Genomics. 2010;20(12):717–41.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Vandenbergh DJ, Rodriguez LA, Miller IT, Uhl GR, Lachman HM. High-activity catechol-O-methyltransferase allele is more prevalent in polysubstance abusers. Am J Med Genet. 1997;74(4):439–42.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Jugurnauth SK, Chen CK, Barnes MR, Li T, Lin SK, Liu HC, et al. A COMT gene haplotype associated with methamphetamine abuse. Pharmacogenet Genomics. 2011;21(11):731–40.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Nedic G, Nikolac M, Sviglin KN, Muck-Seler D, Borovecki F, Pivac N. Association study of a functional catechol-O-methyltransferase (COMT) Val108/158Met polymorphism and suicide attempts in patients with alcohol dependence. Int J Neuropsychopharmacol. 2011;14(3):377–88.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Nedic Erjavec G, Nenadic Sviglin K, Nikolac Perkovic M, Muck-Seler D, Jovanovic T, Pivac N. Association of gene polymorphisms encoding dopaminergic system components and platelet MAO-B activity with alcohol dependence and alcohol dependence-related phenotypes. Prog Neuropsychopharmacol Biol Psychiatry. 2014;54:321–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tiihonen J, Hallikainen T, Lachman H, Saito T, Volavka J, Kauhanen J, et al. Association between the functional variant of the catechol-O-methyltransferase (COMT) gene and type 1 alcoholism. Mol Psychiatry. 1999;4(3):286–9.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Cuesto G, Everaerts C, León LG, Acebes A. Molecular bases of anorexia nervosa, bulimia nervosa and binge eating disorder: shedding light on the darkness. J Neurogenet. 2017;31(4):266–87.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Lindvall Dahlgren C, Wisting l, Rø Ø. Feeding and eating disorders in the DSM-5 era: a systematic review of prevalence rates in non-clinical male and female samples. J Eat Disord. 2017;5:56.Google Scholar
  57. 57.
    Breithaupt L, Hübel C, Bulik CM. Updates on genome-wide association findings in eating disorders and future application to precision medicine. Curr Neuropharmacol. 2018;16(8):1102–10.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Trace SE, Baker JH, Penas-Lledo E, Bulik CM. The genetics of eating disorders. Annu Rev Clin Psychol. 2013;9:589–620.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Yilmaz Z, Hardaway JA, Bulik CM. Genetics and epigenetics of eating disorders. Adv Genomics Genet. 2015;5:131–50.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Svob Strac D, Nikolac Perkovic M, Nedic Erjavec G, Uzun S, Sagud M, Zivkovic M, et al. The role of brain-derived neurotrophic factor (BDNF) in cognition and treatment response. In: Bennet C, editor. Brain-derived neurotrophic factor (BDNF): therapeutic approaches, role in neuronal development and effects on cognitive health. New York: Nova Science Publishers Inc.; 2015 (Chapter 3). p. 67–146.Google Scholar
  61. 61.
    Nakabayashi K, Komaki G, Tajima A, Ando T, Ishikawa M, Nomoto J, et al. Identification of novel candidate loci for anorexia nervosa at 1q41 and 11q22 in Japanese by a genome-wide association analysis with microsatellite markers. J Hum Genet. 2009;54(9):531–7.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wang K, Zhang H, Bloss CS, Duvvuri V, Kaye W, Schork NJ, et al. A genome-wide association study on common SNPs and rare CNVs in anorexia nervosa. Mol Psychiatry. 2011;16(9):949–59.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Boraska V, Franklin CS, Floyd JA, Thornton LM, Huckins LM, Southam L, et al. A genome-wide association study of anorexia nervosa. Mol Psychiatry. 2014;19(19):1085–94.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wade TD, Gordon S, Medland S, Bulik CM, Heath AC, Montgomery GW, et al. Genetic variants associated with disordered eating. Int J Eat Disord. 2013;46(6):594–608.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Bulik CM, Kleiman SC, Yilmaz Z. Genetic epidemiology of eating disorders. Curr Opin Psychiatry. 2016;29(6):383–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Root TL, Szatkiewicz JP, Jonassaint CR, Thornton LM, Pinheiro AP, Strober M, et al. Association of candidate genes with phenotypic traits relevant to anorexia nervosa. Eur Eat Disord Rev. 2011;19(6):487–93.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Martaskova D, Slachtova L, Kemlink D, Zahorakova D, Papezova H. Polymorphisms in serotonin-related genes in anorexia nervosa. The first study in Czech population and meta analyses with previously performed studies. Folia Biol. (Praha) 2009;55(5):192–7.Google Scholar
  68. 68.
    Kipman A, Bruins-Slot L, Boni C, Hanoun N, Ades J, BlotP, et al. 5-HT2A gene promoter polymorphism as a modifying rather than a vulnerability factor in anorexia nervosa. Eur Psychiatry. 2002;17(4):227–29.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gorwood P, Kipman A, Foulon C. The human genetics of anorexia nervosa. Eur J Pharmacol. 2003;480(1–3):163–70.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Koren R, Duncan AE, Munn-Chernoff MA, Bucholz KK, Lynskey MT, Heath AC, et al. Preliminary evidence for the role of HTR2A variants in binge eating in young women. Psychiatr Genet. 2014;24(1):28–33.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Munn-Chernoff MA, Baker JH. A primer on the genetics of comorbid eating disorders and substance use disorders. Eur Eat Disord Rev. 2016;24(2):91–100.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Bergen AW, van den Bree MBM, Yeager M, Welch R, Ganjei JK, Haque K, et al. Candidate genes for anorexia nervosa in the 1p33–36 linkage region: serotonin 1D and delta opioid receptor loci exhibit significant association to anorexia nervosa. Mol Psychiatry. 2003;8(4):397–406.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Brown KMO, Bujac SR, Mann ET, Campbell DA, Stubbins MJ, Blundell JE. Further evidence of association of OPRD1 & HTR1D polymorphisms with susceptibility to anorexia nervosa. Biol Psychiatry. 2007;61(3):367–73.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Kiezebrink K, Mann ET, Bujac SR, Stubbins MJ, Campbell DA, Blundell JE. Evidence of complex involvement of serotonergic genes with restrictive and binge purge subtypes of anorexia nervosa. World J Biol Psychiatry. 2010;11(6):824–33.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hernández S, Camarena B, González L, Caballero A, Flores G, Aguilar A. A family-based association study of the HTR1B gene in eating disorders. Rev Bras Psiquiatr. 2016;38(3):239–42.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Lee Y, Lin PY. Association between serotonin transporter gene polymorphism and eating disorders: a meta-analytic study. Int J Eat Disord. 2010;43(6):498–504.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Calati R, De Ronchi D, Bellini M, Serretti A. The 5-HTTLPR polymorphism and eating disorders: a meta-analysis. Int J Eat Disord. 2011;4(3):191–9.CrossRefGoogle Scholar
  78. 78.
    Slof-Op’t Landt MC, Meulenbelt I, Bartels M, Suchiman E, Middeldorp CM, Houwing-Duistermaat JJ, et al. Association study in eating disorders: TPH2 associates with anorexia nervosa and self-induced vomiting. Genes Brain Behav. 2011;10(2):236–43.Google Scholar
  79. 79.
    Grice DE, Halmi KA, Fichter MM, Strober M, Woodside DB, Treasure JT, et al. Evidence for a susceptibility gene for anorexia nervosa on chromosome 1. Am J Hum Genet. 2002;70(3):787–92.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Frisch A, Laufer N, Danziger Y, Michaelovsky E, Leor S, Carel C, et al. Association of anorexia nervosa with the high activity allele of the COMT gene: a family-based study in Israeli patients. Mol Psychiatry. 2001;6(2):243–5.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Mikolajczyk E, Smiarowska M, Grzywacz A, Samochowiec J. Association of eating disorders with catechol-O-methyltransferase gene functional polymorphism. Neuropsychobiology. 2006;54(1):82–6.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Davis C, Levitan RD, Yilmaz Z, Kaplan AS, Carter JC, Kennedy JL. Binge eating disorder and the dopamine D2 receptor: genotypes and sub-phenotypes. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38(2):328–35.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bachner-Melman R, Lerer E, Zohar AH, Kremer I, Elizur Y, Nemanov L, et al. Anorexia nervosa, perfectionism, and dopamine D4 receptor (DRD4). Am J Med Genet. B Neuropsychiatr Genet. 2007;144B (6):748–56.CrossRefGoogle Scholar
  84. 84.
    Gervasini G, González LM, Gamero-Villarroel C, Mota-Zamorano S, Carrillo JA, Flores I, et al. Effect of dopamine receptor D4 (DRD4) haplotypes on general psychopathology in patients with eating disorders. Gene. 2018;654:43–8.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Dardennes RM, Zizzari P, Tolle V, Foulon C, Kipman A, Romo L, et al. Family trios analysis of common polymorphisms in the obestatin/ghrelin, BDNF and AGRP genes in patients with anorexia nervosa: association with subtype, body-mass index, severity and age of onset. Psychoneuroendocrinology. 2007;32(2):106–13.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Monteleone P, Tortorella A, Castaldo E, Di Filippo C, Maj M. The Leu72Met polymorphism of the ghrelin gene is significantly associated with binge eating disorder. Psychiatr Genet. 2007;17(1):13–6.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Muller TD, Tschöp MH, Jarick I, Ehrlich S, Scherag S, Herpertz-Dahlmann B, et al. Genetic variation of the ghrelin activator gene ghrelin O-acyltransferase (GOAT) is associated with anorexia nervosa. J Psychiatr Res. 2011;45(5):706–11.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Boraska V, Davis OS, Cherkas LF, Helder SG, Harris J, Krug I, et al. Genome-wide association analysis of eating disorder-related symptoms, behaviors, and personality traits. Am J Med Genet B Neuropsychtr Genet. 2012;159B(7):803–11.CrossRefGoogle Scholar
  89. 89.
    Versini A, Ramoz N, Le Strat Y, Scherag S, Ehrlich S, Boni C, et al. Estrogen receptor 1 gene (ESR1) is associated with restrictive anorexia nervosa. Neuropsychopharmacology. 35(8):1818–25.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Monteleone P, Bifulco M, Di Filippo C, Gazzerro P, Canestrelli B, Monteleone F, et al. Association of CNR1 and FAAH endocannabinoid gene polymorphisms with anorexia nervosa and bulimia nervosa: evidence for synergistic effects. Genes Brain Behav. 2009;8(7):728–32.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ribases M, Gratacòs M, Fernández-Aranda F, Bellodi L, Boni C, Anderluh M, et al. Association of BDNF with anorexia, bulimia and age of onset of weight loss in six European populations. Hum Mol Genet. 2004;13(12):1205–12.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Muller TD, Greene BH, Bellodi L, Cavallini MC, Cellini E, Di Bella D, et al. Fat mass and obesity-associated gene (FTO) in eating disorders: evidence for association of the rs9939609 obesity risk allele with bulimia nervosa and anorexia nervosa. Obes Facts. 2012;5(3):408–19.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Koronyo-Hamaoui M, Frisch A, Stein D, Denziger Y, Leor S, Michaelovsky E, et al. Dual contribution of NR2B subunit of NMDA receptor and Ca2+-activated K+ channel to genetic predisposition to anorexia nervosa. J Psychiatr Res. 2007;41(1–2):160–7.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Liu X, Bipolar Genome Study (BiGS), Kelsoe JR, Greenwood TA. A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region. J Affect Disord. 2016;189:141–9.Google Scholar
  95. 95.
    Miyasaka K, Hosoya H, Sekime A, Ohta M, Amono H, Matsushita S, et al. Association of ghrelin receptor gene polymorphism with bulimia nervosa in a Japanese population. J Neural Transm. 2006;113(9):1279–85.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Vink T, Hinney A, van Elburg AA, van Goozen SH, Sandkuijl LA, Sinke RJ, et al. Association between an agouti-related protein gene polymorphism and anorexia nervosa. Mol. Psychiatry. 2001;6(3):325–8.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Nishiguchi N, Matsushita S, Suzuki K, Masanobu M, Shirakawa O, Higuchi S. Association between 5HT2A receptor gene promoter region polymorphism and eating disorders in Japanese patients. Biol Psychiatry. 2001;50(2):123–8.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Ricca V, Nacmias B, Cellini E, Di Bernardo M, Rotella CM, Sorbi S. 5-HT2A receptor gene polymorphism and eating disorders. Neurosci Lett. 2002;323(2):105–8.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Nilsson M, Naessen S, Dahlman I, Linden Hirschberg A, Gustafsson JA, Dahlman-Wright K. Association of estrogen receptor beta gene polymorphisms with bulimic disease in women. Mol Psychiatry. 2004;9(1):28–34.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Bulik-Sullivan B, Finucane H, Anttila V, Gusev A, Day F, ReproGen Consortium, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, et al. Post-traumatic stress disorder. Nat Rev Dis Primers. 2015;1:15057.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kessler RC. Posttraumatic stress disorder: the burden to the individual and to society. J Clin Psychiatry. 2000;61(Suppl 5):4–12.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Stein MB, Jang KJ, Taylor S, Vernon PA, Livesley WJ. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder: a twin study. Am J Psychiatry. 2002;159(10):1675–81.Google Scholar
  104. 104.
    Sartor CE, Grant JD, Lynskey MT, McCutcheon VV, Waldron M, Statham DJ, et al. Common heritable contributions to low-risk trauma, high-risk trauma, posttraumatic stress disorder, and major depression. Arch Gen Psychiatry. 2012;69(3):293–9.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Amstadter AB, Nugent NR, Koenen KC. Genetics of PTSD: fear conditioning as a model for future research. Psychiatr Ann. 2009;39(6):358–67.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Comings DE, Comings BG, Muhleman D, Dietz G, Shahbahrami B, Tast D, et al. The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders. JAMA. 1991;266(13):1793–800.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Comings DE, Muhleman D, Gysin R. Dopamine D2 receptor (DRD2) gene and susceptibility to posttraumatic stress disorder: a study and replication. Biol Psychiatry. 1996;40(5):368–72.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Young RM, Lawford BR, Noble EP, Kann B, Wilkie A, Ritchie T, et al. Harmful drinking in military veterans with post-traumatic stress disorder: association with the D2 dopamine receptor A1 allele. Alcohol Alcohol. 2002;37(5):451–6.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Bailey JN, Goenjian AK, Noble EP, Walling DP, Ritchie T, Goenjian HA. PTSD and dopaminergic genes, DRD2 and DAT, in multigenerational families exposed to the Spitak earthquake. Psychiatry Res. 2010;178(3):507–10.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Hemmings SM, Martin LI, Klopper M, van der Merwe L, Aitken L, de Wit E, et al. BDNF Val66Met and DRD2 Taq1A polymorphisms interact to influence PTSD symptom severity: a preliminary investigation in a South African population. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:273–80.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Voisey J, Swagell CD, Hughes IP, Morris CP, van Daal A, Noble EP, et al. The DRD2 gene 957C > T polymorphism is associated with posttraumatic stress disorder in war veterans. Depress Anxiety. 2009;26(1):28–33.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Drury SS, Theall KP, Keats BJB, Scheeringa M. The role of the dopamine transporter (DAT) in the development of PTSD in preschool children. J Trauma Stress. 2009;22(6):534–9.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Valente NLM, Vallada H, Cordeiro Q, Miguita K, Bressan RA, Andreoli SB, et al. Candidate-gene approach in posttraumatic stress disorder after urban violence: association analysis of the genes encoding serotonin transporter, dopamine transporter, and BDNF. J Mol Neurosci. 2011;44(1):59–67.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Li L, Bao Y, He S, Wang G, Guan Y, Ma D, et al. The association between genetic variants in the dopaminergic system and posttraumatic stress disorder: a meta-analysis. Medicine. 2016;95(11):e3074.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Dragan WL, Oniszczenko W. The association between dopamine D4 receptor exon III polymorphism and intensity of PTSD symptoms among flood survivors. Anxiety Stress Coping. 2009;22(5):483–95.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Nakamura M, Ueno S, Sano A, Tanabe H. The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants. Mol Psychiatry. 2000;5(1):32–8.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Lee HJ, Lee MS, Kang RH, Kim H, Kim SD, Kee BS, et al. Influence of the serotonin transporter promoter gene polymorphism on susceptibility to posttraumatic stress disorder. Depress Anxiety. 2005;21(3):135–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Wang Z, Baker DG, Harrer J, Hamner M, Price M, Amstadter A. The relationship between combat-related posttraumatic stress disorder and the 5-HTTLPR/rs25531 polymorphism. Depress Anxiety. 2011;28(12):1067–73.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Mellman TA, Alim T, Brown DD, Gorodetsky E, Buzas B, Lawson WB, et al. Serotonin polymorphisms and posttraumatic stress disorder in a trauma exposed African American population. Depress Anxiety. 2009;26(11):993–7.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kovacic Petrovic Z, Nedic Erjavec G, Nikolac Perkovic M, Peraica T, Pivac N. No association between the serotonin transporter linked polymorphic region polymorphism and severity of posttraumatic stress disorder symptoms in combat veterans with or without comorbid depression. Psychiatry Res. 2016;244:376–81PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Kilpatrick DG, Koenen KC, Ruggiero KJ, Acierno R, Galea S, Resnick HS, et al. The serotonin transporter genotype and social support and moderation of posttraumatic stress disorder and depression in hurricane-exposed adults. Am J Psychiatry. 2007;164(11):1693–9.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Koenen KC, Aiello AE, Bakshis E, Amstadter AB, Ruggiero KJ, Acierno R, et al. Modification of the association between serotonin transporter genotype and risk of posttraumatic stress disorder in adults by county-level social environment. Am J Epidemiol. 2009;169(6):704–11.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Brady K, et al. Interactive effect of stressful life events and the serotonin transporter 5-HTTLPR genotype on posttraumatic stress disorder diagnosis in 2 independent populations. Arch Gen Psychiatry. 2009;66(11):1201–9.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Gressier F, Calati R, Balestri M, Marsano A, Alberti S, Antypa N, et al. The 5-HTTLPR polymorphism and posttraumatic stress disorder: a meta-analysis. J Trauma Stress. 2013;26(6):645–53.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Liu Y, Garrett ME, Dennis MF, Green KT; VA Mid-Atlantic MIRECC Registry Workgroup, Ashley-Koch AE, et al. An examination of the association between 5-HTTLPR, combat exposure, and PTSD diagnosis among U.S. Veterans. PLoS ONE. 2015;10(3):e0119998.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Nelson EC, Agrawal A, Pergadia ML, Lynskey MT, Todorov AA, Wang JC, et al. Association of childhood trauma exposure and GABRA2 polymorphisms with risk of posttraumatic stress disorder in adults. Mol Psychiatry. 2009;14(3):234–5.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Kolassa I-T, Kolassa S, Ertl V, Papassotiropoulos A, De Quervain DJF. The risk of posttraumatic stress disorder after trauma depends on traumatic load and the catechol-O-methyltransferase Val158Met polymorphism. Biol Psychiatry. 2010;67(4):304–8.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Valente NLM, Vallada H, Cordeiro Q, Bressan RA, Andreoli SB, Mari JJ, et al. Catechol-O-methyltransferase (COMT) val158met polymorphism as a risk factor for PTSD after urban violence. J Mol Neurosci. 2011;43(3):516–23.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Clark R, DeYoung CG, Sponheim SR, Bender TL, Polusny MA, Erbes CR, et al. Predicting post-traumatic stress disorder in veterans: interaction of traumatic load with COMT gene variation. J Psychiatr Res. 2013;47(12):1849–56.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Havelka Mestrovic A, Tudor L, Nikolac Perkovic M, Nedic Erjavec G, Kovacic Petrovic Z, Svob Strac D, et al. Significant association between catechol-O-methyltransferase (COMT) Val158/108Met polymorphism and cognitive function in veterans with PTSD. Neurosci Lett. 2018;666:38–43.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Notaras M, Hill R, van den Buuse M. The BDNF gene Val66Met polymorphism as a modifier of psychiatric disorder susceptibility: progress and controversy. Mol Psychiatry. 2015;20(8):916–30.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Zhang L, Benedek DM, Fullerton CS, Forsten RD, Naifeh JA, Li XX, et al. PTSD risk is associated with BDNF Val66Met and BDNF overexpression. Mol Psychiatry. 2014;19(1):8–10.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Pivac N, Kozaric-Kovacic D, Grubisic-Ilic M, Nedic G, Rakos I, Nikolac M, et al. The association between brain-derived neurotrophic factor Val66Met variants and psychotic symptoms in posttraumatic stress disorder. World J Biol Psychiatry. 2012;13(4):306–11.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry. 2003;160(9):1554–65.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Lutz B. The endocannabinoid system and extinction learning. Mol Neurobiol. 2007;36(1):92–101.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Lu AT, Ogdie MN, Järvelin MR, Moilanen IK, Loo SK, McCracken JT, et al. Association of the cannabinoid receptor gene (CNR1) with ADHD and post-traumatic stress disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B(8):1488–94.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Mota N, Sumner JA, Lowe SR, Neumeister A, Uddin M, Aiello AE, et al. The rs1049353 polymorphism in the CNR1 gene interacts with childhood abuse to predict posttraumatic threat symptoms. J Clin Psychiatry. 2015;76(12):1622–3.CrossRefGoogle Scholar
  138. 138.
    Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470(7335):492–7.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mercer KB, Dias B, Shafer D, Maddox SA, Muller JG, Hu P, et al. Functional evaluation of a PTSD-associated genetic variant: estradiol regulation and ADCYAP1R1. Transl. Psychiatry. 2016;6(12):e978.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Binder EB, Bradley RG, Liu W, Epstein MP, Deveau TC, Mercer KB, et al. Association of FKBP5 polymorphisms and childhood abuse with risk of posttraumatic stress disorder symptoms in adults. JAMA. 2008;299(11):1291–305.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Xie P, Kranzler HR, Poling J, Stein MB, Anton RF, Farrer LA, et al. Interaction of FKBP5 with childhood adversity on risk for post-traumatic stress disorder. Neuropsychopharmacology. 2010;35(8):1684–92.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16(1):33–41.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Ramikie TS, Ressler KJ. Stress-related disorders, pituitary adenylate cyclase—activating peptide (PACAP)ergic system, and sex differences. Dialogues Clin Neurosci. 2016;18(4):403–13.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Duncan LE, Ratanatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch AE, et al. Largest GWAS of PTSD (N = 20,070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiatry. 2018;23(3):666–73.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Logue MW, Baldwin C, Guffanti G, Melista E, Wolf EJ, Reardon AF, et al. A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol Psychiatry. 2013;18(8):937–42.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Xie P, Kranzler HR, Yang C, Zhao H, Farrer LA, Gelernter J. Genome-wide association study identifies new susceptibility loci for posttraumatic stress disorder. Biol Psychiatry. 2013;74(9):656–63.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Wolf EJ, Rasmusson AM, Mitchell KS, Logue MW, Baldwin CT, Miller MW. A genome-wide association study of clinical symptoms of dissociation in a trauma-exposed sample. Depress Anxiety. 2014;31(4):352–60.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Nievergelt CM, Maihofer AX, Mustapic M, Yurgil KA, Schork NJ, Miller MW, et al. Genomic predictors of combat stress vulnerability and resilience in U.S. marines: a genome-wide association study across multiple ancestries implicates PRTFDC1 as a potential PTSD gene. Psychoneuroendocrinology. 2015;51:459–71.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Ashley-Koch AE, Garrett ME, Gibson J, Liu Y, Dennis MF, Kimbrel NA. Veterans Affairs Mid-Atlantic Mental Illness Research, Education, and Clinical Center Workgroup, Beckham JC, Hauser MA. Genome-wide association study of posttraumatic stress disorder in a cohort of Iraq-Afghanistan era veterans. J Affect Disord. 2015;184:225–34.Google Scholar
  150. 150.
    Stein MB, Chen C, Ursano RJ, Cai T, Gelernter J, Heeringa SG, et al. Army Study to Assess Risk and Resilience in Servicemembers (STARRS) Collaborators. Genome-wide association studies of posttraumatic stress disorder in 2 cohorts of us army soldiers. JAMA Psychiatry. 2016;73(7):695–704.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Kilaru V, Iyer SV, Almli LM, Stevens JS, Lori A, Jovanovic T, et al. Genome-wide gene-based analysis suggests an association between Neuroligin 1 (NLGN1) and post-traumatic stress disorder. Transl Psychiatry. 2016;6:e820.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Melroy-Greif WE, Wilhelmsen KC, Yehuda R, Ehlers CL. Genome-wide association study of post-traumatic stress disorder in two high-risk populations. Twin Res Hum Genet. 2017;20(3):197–207.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Segman RH, Cooper-Kazaz R, Macciardi F, Goltser T, Halfon Y, Dobroborski T, et al. Association between the dopamine transporter gene and posttraumatic stress disorder. Mol Psychiatry. 2002;7(8):903–7.PubMedCrossRefGoogle Scholar
  154. 154.
    Guffanti G, Galea S, Yan L, Roberts AL, Solovieff N, Aiello AE, et al. Genome-wide association study implicates a novel RNA gene, the lincRNA AC068718.1, as a risk factor for posttraumatic stress disorder in women. Psychoneuroendocrinology. 2013;38(12):3029–38.PubMedCrossRefGoogle Scholar
  155. 155.
    Almli LM, Stevens JS, Smith AK, Kilaru V, Meng Q, Flory J, et al. A genome-wide identified risk variant for PTSD is a methylation quantitative trait locus and confers decreased cortical activation to fearful faces. Am J Med Genet B Neuropsychiatr Genet. 2015;168B(5):327–36.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Lowe SR, Meyers JL, Galea S, Aiello AE, Uddin M, Wildman DE, et al. RORA and posttraumatic stress trajectories: main effects and interactions with childhood physical abuse history. Brain Behav. 2015;5(4):e00323.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Sindi IA, Dodd PR. New insights into Alzheimer’s disease pathogenesis: the involvement of neuroligins in synaptic malfunction. Neurodegener Dis Manag. 2015;5(2):137–45.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Mainland JD, Li YR, Zhou T, Liu WL, Matsunami H. Human olfactory receptor responses to odorants. Sci Data. 2015;2:150002.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Suzuki E, Imoto I, Pimkhaokham A, Nakagawa T, Kamata N, Kozaki KI, et al. PRTFDC1, a possible tumor-suppressor gene, is frequently silenced in oral squamous-cell carcinomas by aberrant promoter hypermethylation oncogene. 2007;26(57):7921–32.Google Scholar
  160. 160.
    Apte SS, Parks WC. Metalloproteinases: a parade of functions in matrix biology and an outlook for the future. Matrix Biol. 2015;44–46:1–6.PubMedCrossRefGoogle Scholar
  161. 161.
    Nemes JP, Benzow KA, Moseley ML, Ranum LP, Koob MD. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet. 2000;9(10):1543–51.PubMedCrossRefGoogle Scholar
  162. 162.
    Frasa MA, Maximiano FC, Smolarczyk K, Francis RE, Betson ME, Lozano E, et al. Armus is a Rac1 effector that inactivates Rab7 and regulates E-cadherin degradation. Curr Biol. 2010;20(3):198–208.PubMedCrossRefGoogle Scholar
  163. 163.
    Nievergelt CM, Ashley-Koch AE, Dalvie S, Hauser HA, Morey RA, Smith AK, et al. Genomic approaches to posttraumatic stress disorder: the psychiatric genomic consortium initiative. Biol Psychiatry. 2018;83(10):831–9.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Andrews JA, Neises KD. Cells, biomarkers, and post-traumatic stress disorder: evidence for peripheral involvement in a central disease. J Neurochem. 2012;120(1):26–36.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Williams HJ, Owen MJ, O’Donovan MC. Schizophrenia genetics: new insights from new approaches. Br Med Bull. 2009;91:61–74.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Karayiorgou M, Gogos JA. Schizophrenia genetics: uncovering positional candidate genes. Eur J Hum Genet. 2006;14:512–9.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Gonzalez-Castro TB, Hernandez-Diaz Y, Juarez-Rojop IE, Lopez-Navarez ML, Tovilla-Zarate CA, Fresan A. The role of a catechol-O-methyltransferase (COMT) Val158Met genetic polymorphism in schizophrenia: a systematic review and updated meta-analysis on 32,816 subjects. NeuroMol Med. 2016;18(2):216–31.CrossRefGoogle Scholar
  168. 168.
    Rees E, O’Donovan MC, Owen MJ. Genetics of schizophrenia. Curr Opin Behav Sci. 2015;2:8–14.CrossRefGoogle Scholar
  169. 169.
    Bilder RM, Volavka J, Czbor P, Malhotra AK, Kennedy JL, Ni X, et al. Neurocognitive correlates of the COMT Val158Met polymorphism in chronic schizophrenia. Biol Psychiatry. 2002;52:701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA. 2001;98(12):6917–22.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Fan JB, Zhang CS, Gu NF, Li XW, Sun WW, Wang HY, et al. Catechol-O-methyltransferase gene Val/Met functional polymorphism and risk of schizophrenia: a large-scale association study plus meta-analysis. Biol Psychiatry. 2004;57:139–44.CrossRefGoogle Scholar
  172. 172.
    Huang E, Zai CC, Lisoway A, Maciukiewicz M, Felsky D, Tiwari AK, et al. Catechol-O-methyltransferase Val158Met polymorphism and clinical response to antipsychotic treatment in schizophrenia and schizo-affective disorder patients: a meta-analysis. Int J Neuropsychopharmacol. 2016;19(5):1–12.CrossRefGoogle Scholar
  173. 173.
    Glatt SJ, Faraone SV, Tsuang MT. Association between a functional catechol O-methyltransferase gene polymorphism and schizophrenia: meta-analysis of case-control and family-based studies. Am J Psychiatry. 2003;160:469–76.PubMedCrossRefGoogle Scholar
  174. 174.
    Nikolac M, Sagud M, Nedic G, Nenadic Sviglin K, Mihaljevic Peles A, Uzun S, et al. The lack of association between catechol-O-methyl-transferase Val108/158Met polymorphism and smoking in schizophrenia and alcohol dependence. Letter to the Editor. Psychiatry Res. 2013;205:179–80.Google Scholar
  175. 175.
    Herken H, Emin Erdal M. Catechol-O-methyltransferase gene polymorphism in schizophrenia: evidence for association between symptomatology and prognosis. Psychiatr Genet. 2000;11:105–9.CrossRefGoogle Scholar
  176. 176.
    Sagud M, Tudor L, Uzun S, Nikolac Perkovic M, Zivkovic M, Konjevod M, et al. Haplotypic and genotypic association of catecol-O-methyktransferase rs4680 and rs4818 polymorphisms and treatment resistance in schizophrenia. Front Pharmacol. 2018;9:1–14.CrossRefGoogle Scholar
  177. 177.
    Huo R, Wei Z, Xiong Y, Jiang J, Liu Y, Yan Y, et al. Association of dopamine receptor D1 (DRD1) polymorphisms with risperidone treatment response in Chinese schizophrenia patients. Neurosci Lett. 2014;584:178–83.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Matsumoto J, Nagaoka A, Kunii Y, Miura I, Hino M, Niwa S-I, et al. Effects of the −141C insertion/deletion polymorphism in the dopamine D2 receptor gene on the dopamine system in the striatum in patients with schizophrenia. Psychiatry Res. 2018;264:116–8.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Smith CT, Dang LC, Buckholtz JW, Tetreault AM, Cowan RL, Kessler RM, et al. The impact of common dopamine D2 receptor gene polymorphisms on D2/3 receptor availability: C957T as a key determinant in putamen and ventral striatum. Transl Psychiatry. 2017;7:e1091.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Persson J, Stenfors C. Superior cognitive goal maintenance in carriers of genetic markers linked to reduced striatal D2 receptor density (C957T and DRD2/ANKK1-TaqIA). PLoS ONE. 2018;13(8):1–12.CrossRefGoogle Scholar
  181. 181.
    Cohen OS, Weickert TW, Hess JL, Paish LM, McCoy SY, Rothmond DA, et al. A splicing-regulatory polymorphism in DRD2 disrupts ZRANB2 binding, impairs cognitive functioning and increases risk for schizophrenia in six Han Chinese samples. Mol Psychiatry. 2015;1–8.Google Scholar
  182. 182.
    Yao J, Pan Y-Q, Ding M, Pang H, Wang B-J. Association between DRD2 (rs1799732 and rs1801028) and ANK1 (rs1800497) polymorphisms and schizophrenia: a meta-analysis. Am J Med Genet Part B. 2014;168B:1–13.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Howes OD, McCutcheon R, Owen MJ, Murray RM. The role of genes, stress, and dopamine in the development of schizophrenia. Biol Psychiatry. 2017;8:9–20.CrossRefGoogle Scholar
  184. 184.
    Okuyama Y, Ishiguro H, Toru M, Arinami T. A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia. Biochem Biophys Res Commun. 1999;258:292–5.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR, et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA. 2004;101(34):12604–9.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Harrison PJ, Weinberger DR. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry. 2005;10:40–68.PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Hodkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky RH, et al. Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet. 2004;75:862–72.CrossRefGoogle Scholar
  188. 188.
    Callicott JH, Straub RE, Pezawas L, Egan MF, Mattay VS, Hariri AR, et al. Variation in DISC1 affects hippocampal structure and function and increases risk for schizophrenia. Proc Natl Acad Sci USA. 2005;102(24):8627–32.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Harrison PJ, Law AJ. Neuregulin 1 and schizophrenia: genetics, gene expression, and neurobiology. Biol Psychiatry. 2006;60:132–40.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Huang E, Hettige NC. Zai G, Tomasi J, Huang J, Zai CC, et al. BDNF Val66Met polymorphism and clinical response to antipsychotic treatment in schizophrenia and schizoaffective disorder patients: a meta-analysis. Pharmacogenomics J. 2018.  https://doi.org/10.1038/s41397-018-0041-5. [Epub ahead of print].PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Hong CJ, Younger WY, Lin CH, Tsai SJ. An association study of a brain-derived neurotrophic factor Val66Met polymorphism and clozapine response of schizophrenic patients. Neurosci Lett. 2003;349:206–8.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Kheirollahi M, Kazemi E, Ashouri S. Brain-derived neurotrophic factor gene Val66Met polymorphism and risk of schizophrenia: a meta-analysis of case–control studies. Cell Mol Neurobiol. 2015;36(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Notaras M, Hill R, van den Buuse M. A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Neurosci Biobehav Rev. 2015;51:15–30.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Blasi G, Selvaggi P, Fazio L, Antonucci LA, Taurisano P, Masellis R, et al. Variation in dopamine D2 and serotonin 5HTt2A receptor genes is associated with working memory processing and response to treatment with antipsychotics. Neuropsychopharmacology. 2015;40(7):1600–8.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Kavanagh DH, Tansey KE, O’Donovan MC, Owen MJ. Schizophrenia genetics: emerging themes for a complex disorder. Mol Psychiatry. 2015;20(1):72–6.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Gonda X, Petschner P, Eszlari N, Baksa D, Edes A, Antal P, et al. Genetic variants in major depressive disorder: from pathophysiology to therapy. Pharmacol Ther. 2018; pii: S0163–7258(18):30156-6.Google Scholar
  197. 197.
    Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157(10):1552–62.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Kendler KS, Gatz M, Gardner CO, Pedersen NL. A Swedish national twin study of lifetime major depression. Am J Psychiatry. 2006;163(1):109–14.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Muñoz M, Pong-Wong R, Canela-Xandri O, Rawlik K, Haley CS, Tenesa A. Evaluating the contribution of genetics and familial shared environment to common disease using the UK Biobank. Nat Genet. 2016;48(9):980–3.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Wang K, Gaitsch H, Poon H, Cox NJ, Rzhetsky A. Classification of common human diseases derived from shared genetic and environmental determinants. Nat Genet. 2017;49(9):1319–25.PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Sullivan PF, Daly MJ, O’Donovan M. Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet. 2012;13(8):537–51.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Uher R. Gene-environment interactions in severe mental illness. Front Psychiatry. 2014;5:48.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Flint J, Kendler KS. The genetics of major depression. Neuron. 2014;81(3):484–503.PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Mullins N, Lewis CM. Genetics of Depression: progress at last. Curr Psychiatry Rep. 2017;19(8):43.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Kendler KS, Ohlsson H, Sundquist K, Sundquist J. Sources of parent-offspring resemblance for major depression in a national Swedish extended adoption study. JAMA Psychiatry. 2018;75(2):194–200.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293–319.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Hammen C, Kim EY, Eberhart NK, Brennan PA. Chronic and acute stress and the prediction of major depression in women. Depress Anxiety. 2009;26(8):718–23.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Brown GW, Bifulco A, Harris TO. Life events, vulnerability and onset of depression: some refinements. Br J Psychiatry. 1987;150:30–42.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Kendler KS, Karkowski-Shuman L. Stressful life events and genetic liability to major depression: genetic control of exposure to the environment? Psychol Med. 1997;27(3):539–47.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Shadrina M, Bondarenko EA, Slominsky PA. Genetics factors in major depression disease. Front Psychiatry. 2018;9:334.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Kautzky A, Baldinger P, Souery D, Montgomery S, Mendlewicz J, Zohar J, et al. The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression. Eur Neuropsychopharmacol. 2015;25(4):441–53.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18(2):199–209.Google Scholar
  213. 213.
    Marx P, Antal P, Bolgar B, Bagdy G, Deakin B, Juhasz G. Comorbidities in the diseasome are more apparent than real: what Bayesian filtering reveals about the comorbidities of depression. PLoS Comput Biol. 2017;13(6):e1005487.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Purves KL, Coleman JRI, Rayner C, Hettema JM, DeckertJ, McIntosh AM, et al. The common genetic architecture of anxiety disorders. 2017; bioRxiv 203844.Google Scholar
  215. 215.
    Yu C, Baune BT, Licinio J, Wong ML. A novel strategy for clustering major depression individuals using whole-genome sequencing variant data. Sci Rep. 2017;7:44389.PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    López-León S, Janssens A, González-Zuloeta Ladd AM, Del-Favero J, Claes SJ, Oostra BA, et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry. 2008;13(8):772–85.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Clarke H, Flint J, Attwood AS, Munafò MR. Association of the 5-HTTLPR genotype and unipolar depression: a meta-analysis. Psychol Med. 2010;40(11):1767–78.PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Kiyohara C, Yoshimasu K. Association between major depressive disorder and a functional polymorphism of the 5-hydroxytryptamine (serotonin) transporter gene: a meta-analysis. Psychiatr Genet. 2010;20(2):49–58.PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Wu YL, Ding XX, Sun YH, Yang HY, Chen J, Zhao X, et al. Association between MTHFR C677T polymorphism and depression: an updated meta-analysis of 26 studies. Prog Neuropsychopharmacol Biol Psychiatry. 2013;46:78–85.PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Zhao X, Huang Y, Ma H, Jin Q, Wang Y, Zhu G. Association between major depressive disorder and the norepinephrine transporter polymorphisms T-182C and G1287A: a meta-analysis. J Affect Disord. 2013;150(1):23–8.PubMedCrossRefPubMedCentralGoogle Scholar
  221. 221.
    Zhou Y, Su H, Song J, Guo L, Sun Y. Association between norepinephrine transporter T-182C polymorphism and major depressive disorder: a meta-analysis. Neurosci Lett. 2014;561:64–8.PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Jin C, Xu W, Yuan J, Wang G, Cheng Z. Meta-analysis of association between the -1438A/G (rs6311) polymorphism of the serotonin 2A receptor gene and major depressive disorder. Neurol Res. 2013;35(1):7–14.PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Gyekis JP, Yu W, Dong S, Wang H, Qian J, Kota P, et al. No association of genetic variants in BDNF with major depression: a meta- and gene-based analysis. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(1):61–70.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Kishi T, Yoshimura R, Fukuo Y, Kitajima T, Okochi T, Matsunaga S, et al. The CLOCK gene and mood disorders: a case-control study and meta-analysis. Chronobiol Int. 2011;28(9):825–33.PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Gatt JM, Burton KL, Williams LM, Schofield PR. Specific and common genes implicated across major mental disorders: a review of meta-analysis studies. J Psychiatr Res. 2015;60:1–13.PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Bosker FJ, Hartman CA, Nolte IM, Prins BP, Terpstra P, Posthuma D, et al. Poor replication of candidate genes for major depressive disorder using genome-wide association data. Mol Psychiatry. 2011;16(5):516–32.PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR, et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry. 2012;17(1):36–48.PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18(4):497–511.Google Scholar
  229. 229.
    Dunn EC, Brown RC, Dai Y, Rosand J, Nugent NR, Amstadter AB, et al. Genetic determinants of depression: recent findings and future directions. Harv Rev Psychiatry. 2015;23(1):1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Kohli MA, Lucae S, Saemann PG, Schmidt MV, Demirkan A, Hek K, et al. The neuronal transporter gene SLC6A15 confers risk to major depression. Neuron. 2011;70(2):252–65.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Converge Consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature. 2015;523(7562):588–91.Google Scholar
  232. 232.
    Ware EB, Mukherjee B, Sun YV, Diez-Roux AV, Kardia SL, Smith JA. Comparative genome-wide association studies of a depressive symptom phenotype in a repeated measures setting by race/ethnicity in the multi-ethnic study of atherosclerosis. BMC Genet. 2015;16:118.PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Huo YX, Huang L, Zhang DF, Yao YG, Fang YR, Zhang C, et al. Identification of SLC25A37 as a major depressive disorder risk gene. J Psychiatr Res. 2016;83:168–75.PubMedCrossRefPubMedCentralGoogle Scholar
  234. 234.
    Hyde CL, Nagle MW, Tian C, Chen X, Paciga SA, Wendland JR, et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat Genet. 2016;48(9):1031–6.PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Okbay ABaselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet. 2016;48(6):624–33.Google Scholar
  236. 236.
    Mbarek H, Milaneschi Y, Hottenga JJ, Ligthart L, de Geus EJC, Ehli EA, et al. Genome-wide significance for PCLO as a gene for major depressive disorder. Twin Res Hum Genet. 2017;20(4):267–70.PubMedCrossRefPubMedCentralGoogle Scholar
  237. 237.
    Power RA, Tansey KE, Buttenschøn HN, Cohen-Woods S, Bigdeli T, Hall LS, et al. Genome-wide association for major depression through age at onset stratification: major depressive disorder working group of the psychiatric genomics consortium. Biol Psychiatry. 2017;81(4):325–35.PubMedPubMedCentralCrossRefGoogle Scholar
  238. 238.
    Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50(5):668–81.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Xiao X, Zheng F, Chang H, Ma Y, Yao YG, Luo XJ, et al. The gene encoding protocadherin 9 (PCDH9), a novel risk factor for major depressive disorder. Neuropsychopharmacology. 2018;43(5):1128–37.PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Sullivan PF, de Geus EJ, Willemsen G, James MR, Smit JH, Zandbelt T, et al. Genome-wide association for major depressive disorder: a possible role for the presynaptic protein piccolo. Mol Psychiatry. 2009;14(4):359–75.PubMedCrossRefPubMedCentralGoogle Scholar
  241. 241.
    Sabunciyan S, Aryee MJ, Irizarry RA, Rongione M, Webster MJ, Kaufman WE, et al. Genome-wide DNA methylation scan in major depressive disorder. PLoS ONE. 2012;7(4):e34451.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Wong ML, Arcos-Burgos M, Liu S, Vélez JI, Yu C, Baune BT, et al. The PHF21B gene is associated with major depression and modulates the stress response. Mol Psychiatry. 2017;22(7):1015–25.PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Amin N, Jovanova O, Adams HH, Dehghan A, Kavousi M, Vernooij MW, et al. Exome-sequencing in a large population-based study reveals a rare Asn396Ser variant in the LIPG gene associated with depressive symptoms. Mol Psychiatry. 2017;22(4):537–43.PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Knowles EE, Kent JW Jr, McKay DR, Sprooten E, Mathias SR, Curran JE, et al. Genome-wide linkage on chromosome 10q26 for a dimensional scale of major depression. J Affect Disord. 2016;2016(191):123–31.CrossRefGoogle Scholar
  245. 245.
    Pirooznia M, Wang T, Avramopoulos D, Potash JB, Zandi PP, Goes FS. High-throughput sequencing of the synaptome in major depressive disorder. Mol Psychiatry. 2016;21(5):650–5.PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Glessner JT, Wang K, Sleiman PM, Zhang H, Kim CE, Flory JH, et al. Duplication of the SLIT3 locus on 5q35.1 predisposes to major depressive disorder. PLoS One. 2010;5(12):e15463.PubMedPubMedCentralCrossRefGoogle Scholar
  247. 247.
    Cukier HN, Dueker ND, Slifer SH, Lee JM, Whitehead PL, Lalanne E, et al. Exome sequencing of extended families with autism reveals genes shared across neurodevelopmental and neuropsychiatric disorders. Mol Autism. 2014;5(1):1.PubMedPubMedCentralCrossRefGoogle Scholar
  248. 248.
    Rucker JJ, Breen G, Pinto D, Pedroso I, Lewis CM, Cohen-Woods S, et al. Genome-wide association analysis of copy number variation in recurrent depressive disorder. Mol Psychiatry. 2013;18(2):183–9.PubMedCrossRefPubMedCentralGoogle Scholar
  249. 249.
    Rucker JJ, Tansey KE, Rivera M, Pinto D, Cohen-Woods S, Uher R, et al. Phenotypic association analyses with copy number variation in recurrent depressive disorder. Biol Psychiatry. 2016;79(4):329–36.PubMedPubMedCentralCrossRefGoogle Scholar
  250. 250.
    Haenisch B, Linsel K, Brüss M, Gilsbach R, Propping P, Nöthen MM, et al. Association of major depression with rare functional variants in norepinephrine transporter and serotonin1A receptor genes. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(7):1013–6.PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    Perlis RH, Smoller JW, Mysore J, Sun M, Gillis T, Purcell S, et al. Prevalence of incompletely penetrant Huntington’s disease alleles among individuals with major depressive disorder. Am J Psychiatry. 2010;167(5):574–9.PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Neff CD, Abkevich V, Potter J, Riley R, Shattuck D, Katz DA. Evidence for epistasis between SLC6A4 and a chromosome 4 gene as risk factors in major depression. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):321–2.PubMedPubMedCentralGoogle Scholar
  253. 253.
    Gabriela Nielsen M, Congiu C, Bortolomasi M, Bonvicini C, Bignotti S, Abate M, et al. MTHFR: genetic variants, expression analysis and COMT interaction in major depressive disorder. J Affect Disord. 2015;183:179–86.PubMedCrossRefPubMedCentralGoogle Scholar
  254. 254.
    Szczepankiewicz A, Leszczyńska-Rodziewicz A, Pawlak J, Rajewska-Rager A, Wilkosc M, Zaremba D, et al. Epistatic interaction between CRHR1 and AVPR1b variants as a predictor of major depressive disorder. Psychiatr Genet. 2013;23(6):239–46.PubMedCrossRefPubMedCentralGoogle Scholar
  255. 255.
    Ben-Efraim YJ, Wasserman D, Wasserman J, Sokolowski M. Family-based study of AVPR1B association and interaction with stressful life events on depression and anxiety in suicide attempts. Neuropsychopharmacology. 2013;38(8):1504–11.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Xiao Z, Liu W, Gao K, Wan Q, Yang C, Wang H, et al. Interaction between CRHR1 and BDNF genes increases the risk of recurrent major depressive disorder in Chinese population. PLoS ONE. 2011;6(12):e28733.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Bobińska K, Szemraj J, Czarny P, Gałecki P. Role of MMP-2, MMP-7, MMP-9 and TIMP-2 in the development of recurrent depressive disorder. J Affect Disord. 2016;205:119–29.PubMedCrossRefPubMedCentralGoogle Scholar
  258. 258.
    Reuter M, Markett S, Melchers M, Montag C. Interaction of the cholinergic system and the hypothalamic-pituitary-adrenal axis as a risk factor for depression: evidence from a genetic association study. NeuroReport. 2012;23(12):717–20.PubMedCrossRefPubMedCentralGoogle Scholar
  259. 259.
    Pae CU, Drago A, Forlani M, Patkar AA, Serretti A. Investigation of an epistastic effect between a set of TAAR6 and HSP-70 genes variations and major mood disorders. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(2):680–3.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Murk W, DeWan AT. Exhaustive genome-wide search for SNP-SNP interactions across 10 human diseases. G3 (Bethesda). 2016;6(7):2043–50.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science. 2003;301(5631):386–9.PubMedPubMedCentralCrossRefGoogle Scholar
  262. 262.
    Karg K, Burmeister M, Shedden K, Sen S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation. Arch Gen Psychiatry. 2011;68(5):444–54.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Sharpley CF, Palanisamy SK, Glyde NS, Dillingham PW, Agnew LL. An update on the interaction between the serotonin transporter promoter variant (5-HTTLPR), stress and depression, plus an exploration of non-confirming findings. Behav Brain Res. 2014;273:89–105.PubMedPubMedCentralCrossRefGoogle Scholar
  264. 264.
    Bleys D, Luyten P, Soenens B, Claes S. Gene-environment interactions between stress and 5-HTTLPR in depression: a meta-analytic update. J Affect Disord. 2018;226:339–45.PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Munafò MR, Durrant C, Lewis G, Flint J. Gene × Environment interactions at the serotonin transporter locus. Biol Psychiatry. 2009;65(3):211–9.PubMedCrossRefPubMedCentralGoogle Scholar
  266. 266.
    Risch N, Herrell R, Lehner T, Liang KY, Eaves L, Hoh J, et al. Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis. JAMA. 2009;301(23):2462–71.PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Culverhouse RC, Saccone NL, Horton AC, Ma Y, Anstey KJ, Banaschewski T, et al. Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression. Mol Psychiatry. 2018;23(1):133–42.PubMedCrossRefPubMedCentralGoogle Scholar
  268. 268.
    Gonda X, Eszlari N, Kovacs D, Anderson IM, Deakin JF, Juhasz G, et al. Financial difficulties but not other types of recent negative life events show strong interactions with 5-HTTLPR genotype in the development of depressive symptoms. Transl Psychiatry. 2016;6:e798.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Mandelli L, Serretti A. Gene environment interaction studies in depression and suicidal behavior: an update. Neurosci Biobehav Rev. 2013;37(10 Pt 1):2375–97.PubMedCrossRefPubMedCentralGoogle Scholar
  270. 270.
    Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna). 2018;125(1):53–66.PubMedCrossRefPubMedCentralGoogle Scholar
  271. 271.
    Hosang GM, Shiles C, Tansey KE, McGuffin P, Uher R. Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med. 2014;12:7.PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Zhao M, Chen L, Yang J, Han D, Fang D, Qiu X, et al. BDNF Val66Met polymorphism, life stress and depression: a meta-analysis of gene-environment interaction. J Affect Disord. 2018;227:226–35.PubMedCrossRefPubMedCentralGoogle Scholar
  273. 273.
    Gonda X, Sarginson J, Eszlari N, Petschner P, Toth ZG, Baksa D, et al. A new stress sensor and risk factor for suicide: the T allele of the functional genetic variant in the GABRA6 gene. Sci Rep. 2017;7(1):12887.PubMedPubMedCentralCrossRefGoogle Scholar
  274. 274.
    Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol Psychiatry. 2016;21(5):642–9.PubMedCrossRefGoogle Scholar
  275. 275.
    Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P, et al. Effects of IL1B single nucleotide polymorphisms on depressive and anxiety symptoms are determined by severity and type of life stress. Brain Behav Immun. 2016;56:96–104.PubMedCrossRefGoogle Scholar
  276. 276.
    Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P, et al. Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes. J Neural Transm (Vienna). 2016;123(5):541–8.PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Tartter M, Hammen C, Bower JE, Brennan PA, Cole S. Effects of chronic interpersonal stress exposure on depressive symptoms are moderated by genetic variation at IL6 and IL1beta in youth. Brain Behav Immun. 2015;46:104–11.PubMedPubMedCentralCrossRefGoogle Scholar
  278. 278.
    Juhasz G, Hullam G, Eszlari N, Gonda X, Antal P, Anderson IM, et al. Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci USA. 2014;111(16):E1666–73.PubMedCrossRefGoogle Scholar
  279. 279.
    Juhasz G, Chase D, Pegg E, Downey D, Toth ZG, Stones K, et al. CNR1 gene is associated with high neuroticism and low agreeableness and interacts with recent negative life events to predict current depressive symptoms. Neuropsychopharmacology. 2009;34(8):2019–27.PubMedCrossRefGoogle Scholar
  280. 280.
    Lazary J, Eszlari N, Juhasz G, Bagdy G. Genetically reduced FAAH activity may be a risk for the development of anxiety and depression in persons with repetitive childhood trauma. Eur Neuropsychopharmacol. 2016;26(6):1020–8.PubMedCrossRefGoogle Scholar
  281. 281.
    Van der Auwera S, Peyrot WJ, Milaneschi Y, Hertel J, Baune B, Breen G, et al. Genome-wide gene-environment interaction in depression: a systematic evaluation of candidate genes: the childhood trauma working-group of PGC-MDD. Am J Med Genet B Neuropsychiatr Genet. 2018;177(1):40–9.PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Dunn EC, Wiste A, Radmanesh F, Almli LM, Gogarten SM, Sofer T, et al. Genome-wide association study (GWAS) and genome-wide by enviroment interaction study (GWEIS) of depressive symptoms in African American and Hispanic/latina women. Depress Anxiety. 2016;33(4):265–80.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Otowa T, Kawamura Y, Tsutsumi A, Kawakami N, Kan C, Shimada T, et al. The first pilot genome-wide gene-environment study of depression in the japanese population. PLoS ONE. 2016;11(8):e0160823.PubMedPubMedCentralCrossRefGoogle Scholar
  284. 284.
    Grabe HJ, Schwahn C, Mahler J, Appel K, Schulz A, Spitzer C, et al. Genetic epistasis between the brain-derived neurotrophic factor Val66Met polymorphism and the 5-HTT promoter polymorphism moderates the susceptibility to depressive disorders after childhood abuse. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(2):264–70.PubMedCrossRefPubMedCentralGoogle Scholar
  285. 285.
    Dalton ED, Hammen CL, Najman JM, Brennan PA. Genetic susceptibility to family environment: BDNF Val66met and 5-HTTLPR influence depressive symptoms. J Fam Psychol. 2014;28(6):947–56.PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Ignácio ZM, Réus GZ, Abelaira HM, Quevedo J. Epigenetic and epistatic interactions between serotonin transporter and brain-derived neurotrophic factor genetic polymorphism: insights in depression. Neuroscience. 2014;275:455–68.PubMedCrossRefPubMedCentralGoogle Scholar
  287. 287.
    Yang C, Xu Y, Sun N, Ren Y, Liu Z, Cao X, et al. The combined effects of the BDNF and GSK3B genes modulate the relationship between negative life events and major depressive disorder. Brain Res. 2010;1355:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  288. 288.
    Juhasz G, Gonda X, Hullam G, Eszlari N, Kovacs D, Lazary J, et al. Variability in the effect of 5-HTTLPR on depression in a large European population: the role of age, symptom profile, type and intensity of life stressors. PLoS ONE. 2015;10(3):e0116316.PubMedPubMedCentralCrossRefGoogle Scholar
  289. 289.
    Lin E, Hong CJ, Hwang JP, Liou YJ, Yang CH, Cheng D, et al. Gene-gene interactions of the brain-derived neurotrophic-factor and neurotrophic tyrosine kinase receptor 2 genes in geriatric depression. Rejuvenation Res. 2009;12(6):387–93.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gordana Nedic Erjavec
    • 1
  • Dubravka Svob Strac
    • 1
  • Lucija Tudor
    • 1
  • Marcela Konjevod
    • 1
  • Marina Sagud
    • 2
    • 3
  • Nela Pivac
    • 1
    Email author
  1. 1.Division of Molecular MedicineRudjer Boskovic InstituteZagrebCroatia
  2. 2.School of MedicineUniversity of ZagrebZagrebCroatia
  3. 3.Department of PsychiatryUniversity Hospital Centre ZagrebZagrebCroatia

Personalised recommendations