Digital Interventions for Mental Disorders: Key Features, Efficacy, and Potential for Artificial Intelligence Applications

  • David Daniel EbertEmail author
  • Mathias Harrer
  • Jennifer Apolinário-Hagen
  • Harald Baumeister
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)


Mental disorders are highly prevalent and often remain untreated. Many limitations of conventional face-to-face psychological interventions could potentially be overcome through Internet-based and mobile-based interventions (IMIs). This chapter introduces core features of IMIs, describes areas of application, presents evidence on the efficacy of IMIs as well as potential effect mechanisms, and delineates how Artificial Intelligence combined with IMIs may improve current practices in the prevention and treatment of mental disorders in adults. Meta-analyses of randomized controlled trials clearly show that therapist-guided IMIs can be highly effective for a broad range of mental health problems. Whether the effects of unguided IMIs are also clinically relevant, particularly under routine care conditions, is less clear. First studies on IMIs for the prevention of mental disorders have shown promising results. Despite limitations and challenges, IMIs are increasingly implemented into routine care worldwide. IMIs are also well suited for applications of Artificial Intelligence and Machine Learning, which provides ample opportunities to improve the identification and treatment of mental disorders. Together with methodological innovations, these approaches may also deepen our understanding of how psychological interventions work, and why. Ethical and professional restraints as well as potential contraindications of IMIs, however, should also be considered. In sum, IMIs have a high potential for improving the prevention and treatment of mental health disorders across various indications, settings, and populations. Therefore, implementing IMIs into routine care as both adjunct and alternative to face-to-face treatment is highly desirable. Technological advancements may further enhance the variability and flexibility of IMIs, and thus even further increase their impact in people’s lives in the future.


Internet interventions eHealth Mental disorders Psychotherapy Prevention Artificial intelligence Machine learning 


  1. 1.
    Kessler RC, Aguilar-Gaxiola S, Alonso J, Chatterji S, Lee S, Ormel J, Ustün TB, Wang PS. The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol Psichiatr Soc NIH Public Access; 2009;18(1):23–33 PMID:19378696.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Steel Z, Marnane C, Iranpour C, Chey T, Jackson JW, Patel V, Silove D. The global prevalence of common mental disorders: a systematic review and meta-analysis 1980–2013. Int J Epidemiol. 2014;43(2):476–93 PMID:24648481.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, Charlson FJ, Norman RE, Flaxman AD, Johns N, Burstein R, Murray CJ, Vos T. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382(9904):1575–86. Scholar
  4. 4.
    Saarni SI, Suvisaari J, Sintonen H, Pirkola S, Koskinen S, Aromaa A, Lönnqvist J. Impact of psychiatric disorders on health-related quality of life: general population survey. Br J Psychiatry. 2007;190:326–32.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hysenbegasi A, Hass SL, Rowland CR. The impact of depression on the academic productivity of university students. J Ment Health Policy Econ. 2005;8(3):145.Google Scholar
  6. 6.
    Eisenberg D, Golberstein E, Hunt JB. Mental health and academic success in college. B E J Econom Anal Policy. 2009;9(1).
  7. 7.
    Ishii T, Tachikawa H, Shiratori Y, Hori T, Aiba M, Kuga K, Arai T. What kinds of factors affect the academic outcomes of university students with mental disorders? A retrospective study based on medical records. Asian J Psychiatr. 2018;32:67–72. Scholar
  8. 8.
    Kessler RC, Foster CL, Saunders WB, Stang PE. Social consequences of psychiatric disorders, I: educational attainment. Am J Psychiatry Am Psychiatr Assoc. 1995;152(7):1026.Google Scholar
  9. 9.
    Fergusson DM, Woodward LJ. Mental health, educational, and social role outcomes of adolescents with depression. Arch Gen Psychiatry Am Med Assoc. 2002;59(3):225–31.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cuijpers P, Smit F. Excess mortality in depression: a meta-analysis of community studies. J Affect Disord. 2002;72(3):227–36 PMID:12450639.PubMedCrossRefGoogle Scholar
  11. 11.
    Nock MK, Hwang I, Sampson N, Kessler RC, Angermeyer M, Beautrais A, Borges G, Bromet E, Bruffaerts R, De Girolamo G. Cross-national analysis of the associations among mental disorders and suicidal behavior: findings from the WHO World Mental Health Surveys. PLoS Med Public Libr Sci. 2009;6(8):e1000123.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nock MK, Hwang I, Sampson NA, Kessler RC. Mental disorders, comorbidity and suicidal behavior: results from the national comorbidity survey replication. Mol Psychiatry. 2009;15:868. Macmillan Publishers Limited.
  13. 13.
    World Health Organization. The Global Burden of Disease: 2004 update. 2008 PMID:15572474.Google Scholar
  14. 14.
    Barth J, Munder T, Gerger H, Nüesch E, Trelle S, Znoj H, Jüni P, Cuijpers P. Comparative efficacy of seven psychotherapeutic interventions for patients with depression: a network meta-analysis. Focus (Madison) Am Psychiatric Assoc. 2016;14(2):229–43.CrossRefGoogle Scholar
  15. 15.
    Cuijpers P, van Straten A, Andersson G, van Oppen P. Psychotherapy for depression in adults: a meta-analysis of comparative outcome studies. J Consult Clin Psychol. 2008;76(6):909–22 PMID:19045960.PubMedCrossRefGoogle Scholar
  16. 16.
    Cuijpers P, Smit F, Bohlmeijer E, Hollon SD, Andersson G. Efficacy of cognitive–behavioural therapy and other psychological treatments for adult depression: meta-analytic study of publication bias. Br J Psychiatry RCP. 2010;196(3):173–78.Google Scholar
  17. 17.
    Hofmann SG, Smits JAJ. Cognitive-behavioral therapy for adult anxiety disorders: a meta-analysis of randomized placebo-controlled trials. J Clin Psychiatry. 2008;69(4):621–32 PMID:18363421.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cuijpers P, Sijbrandij M, Koole S, Huibers M, Berking M, Andersson G. Psychological treatment of generalized anxiety disorder: a meta-analysis. Clin Psychol Rev. 2014;34(2):130–40 Elsevier.PubMedCrossRefGoogle Scholar
  19. 19.
    Mayo-Wilson E, Dias S, Mavranezouli I, Kew K, Clark DM, Ades AE, Pilling S. Psychological and pharmacological interventions for social anxiety disorder in adults: a systematic review and network meta-analysis. Lancet Psychiatry. 2014;1(5):368–76 PMID:26361000.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bisson JI, Ehlers A, Matthews R, Pilling S, Richards D, Turner S. Psychological treatments for chronic post-traumatic stress disorder: systematic review and meta-analysis. Br J Psychiatry Camb Univ Press. 2007;190(2):97–104.Google Scholar
  21. 21.
    Powers MB, Halpern JM, Ferenschak MP, Gillihan SJ, Foa EB. A meta-analytic review of prolonged exposure for posttraumatic stress disorder. Clin Psychol Rev. 2010;30(6):635–41 Elsevier.PubMedCrossRefGoogle Scholar
  22. 22.
    Leichsenring F, Leibing E. The effectiveness of psychodynamic therapy and cognitive behavior therapy in the treatment of personality disorders: a meta-analysis. Focus (Madison) Am Psychiatric Assoc. 2005;160(3):1223–1428.PubMedCrossRefGoogle Scholar
  23. 23.
    Cristea IA, Gentili C, Cotet CD, Palomba D, Barbui C, Cuijpers P. Efficacy of psychotherapies for borderline personality disorder: a systematic review and meta-analysis. Jama Psychiatry Am Med Assoc. 2017;74(4):319–28.PubMedCrossRefGoogle Scholar
  24. 24.
    Kleinstäuber M, Witthöft M, Hiller W. Efficacy of short-term psychotherapy for multiple medically unexplained physical symptoms: a meta-analysis. Clin Psychol Rev. 2011;31(1):146–60 Elsevier.PubMedCrossRefGoogle Scholar
  25. 25.
    Olatunji BO, Kauffman BY, Meltzer S, Davis ML, Smits JAJ, Powers MB. Cognitive-behavioral therapy for hypochondriasis/health anxiety: a meta-analysis of treatment outcome and moderators. Behav Res Ther. 2014;58:65–74 Elsevier.PubMedCrossRefGoogle Scholar
  26. 26.
    Glombiewski JA, Sawyer AT, Gutermann J, Koenig K, Rief W, Hofmann SG. Psychological treatments for fibromyalgia: a meta-analysis. PAIN®. 2010;151(2):280–95 Elsevier.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Frühauf S, Gerger H, Schmidt HM, Munder T, Barth J. Efficacy of psychological interventions for sexual dysfunction: a systematic review and meta-analysis. Arch Sex Behav Springer; 2013;42(6):915–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Auerbach RP, Alonso J, Axinn WG, Cuijpers P, Ebert DD, Green JG, Hwang I, Kessler RC, Liu H, Mortier P, Nock MK, Pinder-Amaker S, Sampson NA, Aguilar-Gaxiola S, Al-Hamzawi A, Andrade LH, Benjet C, Caldas-de-Almeida JM, Demyttenaere K, Florescu S, de Girolamo G, Gureje O, Haro JM, Karam EG, Kiejna A, Kovess-Masfety V, Lee S, McGrath JJ, O’Neill S, Pennell B-E, Scott K, Ten Have M, Torres Y, Zaslavsky AM, Zarkov Z, Bruffaerts R. Mental disorders among college students in the World Health Organization world mental health surveys. Psychol Med. 2016 Oct 3 [cited 2017 Mar 20];46(14):1–16 PMID:27484622.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kessler RC, Berglund PA, Bruce ML, Koch RJ, Laska EM, Leaf PJ, Manderscheid RW, Rosenheck RA, Walters EE, Wang PS. The prevalence and correlates of untreated serious mental illness. Health Serv Res. 2001;36(6):987–1007.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Bijl RV, de Graaf R, Hiripi E, Kessler RC, Kohn R, Offord DR, Ustun TB, Vicente B, Vollebergh WAM, Walters EE. The prevalence of treated and untreated mental disorders in five countries. Health Aff Project HOPE-The People-to-People Health Foundation, Inc.; 2003;22(3):122–33.Google Scholar
  31. 31.
    Andrade LH, Alonso J, Mneimneh Z, Wells JE, Al-Hamzawi A, Borges G, Bromet E, Bruffaerts R, de Girolamo G, de Graaf R, Florescu S, Gureje O, Hinkov HR, Hu C, Huang Y, Hwang I, Jin R, Karam EG, Kovess-Masfety V, Levinson D, Matschinger H, O’Neill S, Posada-Villa J, Sagar R, Sampson NA, Sasu C, Stein DJ, Takeshima T, Viana MC, Xavier M, Kessler RC. Barriers to mental health treatment: results from the WHO World Mental Health surveys. Psychol Med. 2014;44(6):1303–17 PMID:23931656, Cambridge University Press.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Clement S, Schauman O, Graham T, Maggioni F, Evans-Lacko S, Bezborodovs N, Morgan C, Rüsch N, Brown JSL, Thornicroft G. What is the impact of mental health-related stigma on help-seeking? A systematic review of quantitative and qualitative studies. Psychol Med. 2015 [cited 2017 May 10];45(1):11–27 PMID:24569086.PubMedCrossRefGoogle Scholar
  33. 33.
    Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the national comorbidity survey replication. Arch Gen Psychiatry. 2005;62(6):593–602 PMID:18188442.PubMedCrossRefGoogle Scholar
  34. 34.
    Kupfer DJ, Frank E, Phillips ML. Major depressive disorder: new clinical, neurobiological, and treatment perspectives. Lancet. 2012;379(9820):1045–55 Elsevier.CrossRefGoogle Scholar
  35. 35.
    Ebert DD, Van Daele T, Nordgreen T, Karekla M, Compare AT, Zarbo C, Brugnera A, Oeverland S, Trebbi G, Jensen K, Kaehlke F, Baumeister H. Internet- and mobile-based psychological interventions: applications, efficacy, and potential for improving mental health. Eur Psychol 2018. Scholar
  36. 36.
    Craske MG, Stein MB. No psychotherapy monoculture for anxiety disorders; Authors’ reply. Lancet. 2017;389(10082):1883. Elsevier.CrossRefGoogle Scholar
  37. 37.
    Cuijpers P, Cristea IA, Karyotaki E, Reijnders M, Huibers MJH. How effective are cognitive behavior therapies for major depression and anxiety disorders? A meta‐analytic update of the evidence. World Psychiatry. 2016;15(3):245–58 Wiley Online Library.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Berking M, Rief W, editors. Klinische Psychologie und Psychotherapie. Epidemiology. Berlin Heidelberg: Springer;2012. ISBN:9783642130175 PMID:15003161.Google Scholar
  39. 39.
    Andersson G, Carlbring P, Lindefors N. History and current status of ICBT. In: Lindefors N, Andersson G, editors. Guid internet-based treat psychiatry. Cham: Springer International Publishing; 2016. p. 1–16. Scholar
  40. 40.
    Andersson G, Paxling B, Roch-Norlund P, Ostman G, Norgren A, Almlöv J, Georén L, Breitholtz E, Dahlin M, Cuijpers P, Carlbring P, Silverberg F. Internet-based psychodynamic versus cognitive behavioral guided self-help for generalized anxiety disorder: a randomized controlled trial. Psychother Psychosom. 2012;81(6):344–55 PMID:22964540.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Johansson R, Hesser H, Ljótsson B, Frederick RJ, Andersson G. Transdiagnostic, affect-focused, psychodynamic, guided self-help for depression and anxiety through the internet: study protocol for a randomised controlled trial. BMJ Open. 2012;2(6):1–6 PMID:23257775.CrossRefGoogle Scholar
  42. 42.
    Donker T, Batterham PJ, Warmerdam L, Bennett K, Bennett A, Cuijpers P, Griffiths KM, Christensen H. Predictors and moderators of response to internet-delivered Interpersonal Psychotherapy and Cognitive Behavior Therapy for depression. J Affect Disord. 2013;151(1):343–51.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Mak WWS, Chan ATY, Cheung EYL, Lin CLY, Ngai KCS. Enhancing Web-based mindfulness training for mental health promotion with the health action process approach: randomized controlled trial. J Med Internet Res. 2015;17(1):e8 PMID:25599904.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lin J, Lüking M, Ebert DD, Buhrman M, Andersson G, Baumeister H. Effectiveness and cost-effectiveness of a guided and unguided internet-based acceptance and commitment therapy for chronic pain: study protocol for a three-armed randomised controlled trial. Internet Interv 2015;2(1). Scholar
  45. 45.
    Johansson R, Björklund M, Hornborg C, Karlsson S, Hesser H, Ljótsson B, Rousseau A, Frederick RJ, Andersson G. Affect-focused psychodynamic psychotherapy for depression and anxiety through the Internet: a randomized controlled trial. PeerJ. 2013;1(Suppl 2):e102- PMID:23862104.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Garcia-Palacios A, Hoffman H, Carlin A, Furness TA, Botella C. Virtual reality in the treatment of spider phobia: a controlled study. Behav Res Ther. 2002;40(9):983–93 PMID:12296495.PubMedCrossRefGoogle Scholar
  47. 47.
    Freeman D, Haselton P, Freeman J, Spanlang B, Kishore S, Albery E, Denne M, Brown P, Slater M, Nickless A. Automated psychological therapy using immersive virtual reality for treatment of fear of heights: a single-blind, parallel-group, randomised controlled trial. Lancet Psychiatry. 2018;5(8):625–32 Elsevier.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pot-Kolder RMCA, Geraets CNW, Veling W, van Beilen M, Staring ABP, Gijsman HJ, Delespaul PAEG, van der Gaag M. Virtual-reality-based cognitive behavioural therapy versus waiting list control for paranoid ideation and social avoidance in patients with psychotic disorders: a single-blind randomised controlled trial. Lancet Psychiatry. 2018;5(3):217–26 Elsevier.PubMedCrossRefGoogle Scholar
  49. 49.
    Fleming T, Dixon R, Frampton C, Merry S. A pragmatic randomized controlled trial of computerized CBT (SPARX) for symptoms of depression among adolescents excluded from mainstream education. Behav Cogn Psychother. 2012;40(5):529–41. 12/06. Fleming, Theresa, University of Auckland, Department of Psychological Medicine, Private Bag 92019, Auckland, New Zealand, 1142.PubMedCrossRefGoogle Scholar
  50. 50.
    An LC, Demers MRS, Kirch MA, Considine-Dunn S, Nair V, Dasgupta K, Narisetty N, Resnicow K, Ahluwalia J. A randomized trial of an avatar-hosted multiple behavior change intervention for young adult smokers. J Natl Cancer Inst Monogr. 2013;2013(47):209–15 PMID:24395994, Oxford University Press.CrossRefGoogle Scholar
  51. 51.
    Fitzpatrick KK, Darcy A, Vierhile M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment Heal. 2017;4(2) JMIR Publications Inc.Google Scholar
  52. 52.
    Schlicker S, Ebert DD, Middendorf T, Titzler I, Berking M. Evaluation of a text-message-based maintenance intervention for Major Depressive Disorder after inpatient cognitive behavioral therapy. J Affect Disord. 2017;227:305–12 Elsevier.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Lin J, Ebert DD, Lehr D, Berking M, Baumeister H. Internetbasierte Gesundheitsinterventionen: State of the Art und Einsatzmöglichkeiten in der Rehabilitation. Rehabilitation. 2013;52(03):155–63. Scholar
  54. 54.
    Backhaus A, Agha Z, Maglione ML, Repp A, Ross B, Zuest D, Rice-Thorp NM, Lohr J, Thorp SR. Videoconferencing psychotherapy: a systematic review. Psychol Serv. 2012;9(2):111–31 PMID:22662727.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ebert DD, Lehr D, Smit F, Zarski A-C, Riper H, Heber E, Cuijpers P, Berking M. Efficacy and cost-effectiveness of minimal guided and unguided internet-based mobile supported stress-management in employees with occupational stress: a three-armed randomised controlled trial. BMC Public Health. 2014;14(1):807. Scholar
  56. 56.
    Schueller SM, Tomasino KN, Mohr DC. Integrating human support into behavioral intervention technologies: the efficiency model of support. Clin Psychol Sci Pract. 2016;24(1):27–45. Scholar
  57. 57.
    Zarski A-C, Lehr D, Berking M, Riper H, Cuijpers P, Ebert DD. Adherence to internet-based mobile-supported stress management: a pooled analysis of individual participant data from three randomized controlled trials. J Med Internet Res. 2016;18(6):e146. Scholar
  58. 58.
    Buntrock C, Ebert DD, Lehr D, Cuijpers P, Riper H, Smit F, Berking M. Evaluating the efficacy and cost-effectiveness of web-based indicated prevention of major depression: design of a randomised controlled trial. BMC Psychiatry BioMed Cent. 2014;14:25.
  59. 59.
    Lal S, Adair CE. E-mental health: a rapid review of the literature. Psychiatr Serv Am Psychiatric Assoc. 2014;65(1):24–32.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Henderson C, Evans-Lacko S, Thornicroft G. Mental illness stigma, help seeking, and public health programs. Am J Public Health 2013 [cited 2017 May 10];103(5):777–80 PMID:23488489.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Muñoz RF, Bunge EL, Chen K, Schueller SM, Bravin JI, Shaughnessy EA, Pérez-Stable EJ. Massive open online interventions: a novel model for delivering behavioral-health services worldwide. Clin Psychol Sci. 2016;4(2):194–205 Los Angeles, CA: Sage Publications Sage CA.Google Scholar
  62. 62.
    Fairburn CG, Patel V. The impact of digital technology on psychological treatments and their dissemination. Behav Res Ther. 2017;88:19–25 Elsevier.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Erbe D, Eichert H-C, Riper H, Ebert DD. Blending face-to-face and internet-based interventions for the treatment of mental disorders in adults: systematic review. J Med Internet Res. 2017;19(9):e306 PMID:28916506.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ebert DD, Nobis S, Lehr D, Baumeister H, Riper HM, Auerbach RP, Snoek F, Cuijpers P, Berking M. The 6-month effectiveness of Internet-based guided self-help for depression in adults with Type 1 and 2 diabetes mellitus. Diabet Med. 2016; Scholar
  65. 65.
    Nobis S, Lehr D, Ebert DD, Baumeister H, Snoek F, Riper H, Berking M. Efficacy of a web-based intervention with mobile phone support in treating depressive symptoms in adults with type 1 and type 2 diabetes: a randomized controlled trial. Diabetes Care. 2015 PMID:25710923.Google Scholar
  66. 66.
    Sander L, Paganini S, Lin J, Schlicker S, Ebert DD, Buntrock C, Baumeister H. Effectiveness and cost-effectiveness of a guided Internet- and mobile-based intervention for the indicated prevention of major depression in patients with chronic back pain-study protocol of the PROD-BP multicenter pragmatic RCT. BMC Psychiatry. 2017;17(1).
  67. 67.
    van Bastelaar KMP, Pouwer F, Cuijpers P, Riper H, Snoek FJ. Web-based depression treatment for type 1 and type 2 diabetic patients: a randomized, controlled trial. Diabetes Care. 2011;34(2):320–5 PMID:21216855.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    van Bastelaar KMP, Pouwer F, Cuijpers P, Riper H, Twisk JWR, Snoek FJ. Is a severe clinical profile an effect modifier in a Web-based depression treatment for adults with type 1 or type 2 diabetes? Secondary analyses from a randomized controlled trial. J Med Internet Res. 2012;14(1):e2 PMID:22262728.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Buntrock C, Ebert DD, Lehr D, Smit F, Riper H, Berking M, Cuijpers P. Effect of a web-based guided self-help intervention for prevention of major depression in adults with subthreshold depression a randomized clinical trial. JAMA J Am Med Assoc. 2016;315(17). Scholar
  70. 70.
    Ebert DD, Buntrock C, Cuijpers P, K van Z, P C, C B, C B, H B. Online intervention for prevention of major depression—reply. JAMA. 2016;316(8):881. American Medical Association.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Bockting CLH, Kok GD, van der Kamp L, Smit F, van Valen E, Schoevers R, van Marwijk H, Cuijpers P, Riper H, Dekker J, Beck AT. Disrupting the rhythm of depression using Mobile Cognitive Therapy for recurrent depression: randomized controlled trial design and protocol. BMC Psychiatry. 2011;11:12 PMID:21235774.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Ebert DD, Gollwitzer M, Riper H, Cuijpers P, Baumeister H, Berking M. For whom does it work? moderators of outcome on the effect of a transdiagnostic internet-based maintenance treatment after inpatient psychotherapy: randomized controlled trial. J Med Internet Res. 2013;15(10):e191 PMID:24113764.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ebert DD, Tarnowski T, Gollwitzer M, Sieland B, Berking M. A transdiagnostic internet-based maintenance treatment enhances the stability of outcome after inpatient cognitive behavioral therapy: a randomized controlled trial. Psychother Psychosom. 2013;82(4):246–56 PMID:23736751.PubMedCrossRefGoogle Scholar
  74. 74.
    Golkaramnay V, Bauer S, Haug S, Wolf M, Kordy H. The exploration of the effectiveness of group therapy through an Internet chat as aftercare: a controlled naturalistic study. Psychother Psychosom. 2007;76(4):219–25 PMID:17570960.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kok G, Bockting C, Burger H, Smit F, Riper H. Mobile cognitive therapy: adherence and acceptability of an online intervention in remitted recurrently depressed patients. Internet Interv. 2014;1(2):65–73. Scholar
  76. 76.
    Holländare F, Johnsson S, Randestad M, Tillfors M, Carlbring P, Andersson G, Engström I. Randomized trial of Internet‐based relapse prevention for partially remitted depression. Acta Psychiatr Scand. 2011;124(4):285–94 Wiley Online Library.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Andrews G, Cuijpers P, Craske MG, McEvoy P, Titov N. Computer therapy for the anxiety and depressive disorders is effective, acceptable and practical health care: a meta-analysis. PLoS One. 2010;5(10):e13196 PMID:20967242.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ebert DD, Zarski A-C, Christensen H, Stikkelbroek Y, Cuijpers P, Berking M, Riper H. Internet and computer-based cognitive behavioral therapy for anxiety and depression in youth: a meta-analysis of randomized controlled outcome trials. PLoS One 2015;10(3). Scholar
  79. 79.
    Mayo-Wilson E, Montgomery P. Media-delivered cognitive behavioural therapy and behavioural therapy (self-help) for anxiety disorders in adults. Cochrane database Syst Rev. 2013;9:CD005330 PMID:24018460.Google Scholar
  80. 80.
    Richards D, Richardson T. Computer-based psychological treatments for depression: a systematic review and meta-analysis. Clin Psychol Rev. 2012;32(4):329–42 PMID:22466510 Elsevier Ltd.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Richards D, Richardson T, Timulak L, McElvaney J. The efficacy of internet-delivered treatment for generalized anxiety disorder: a systematic review and meta-analysis. Internet Interv. 2015;2(3):272–82. Elsevier B.V.CrossRefGoogle Scholar
  82. 82.
    Olthuis JV, Watt MC, Bailey K, Hayden JA, Stewart SH. Therapist-supported Internet cognitive behavioural therapy for anxiety disorders in adults. Cochrane database Syst Rev. 2015;3:CD011565 PMID:25742186.Google Scholar
  83. 83.
    Josephine K, Josefine L, Philipp D, David E, Harald B. Internet- and mobile-based depression interventions for people with diagnosed depression: a systematic review and meta-analysis. J Affect Disord. 2017;223:28–40 PMID:28715726 Elsevier.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Kuester A, Niemeyer H, Knaevelsrud C. Internet-based interventions for posttraumatic stress: a meta-analysis of randomized controlled trials. Clin Psychol Rev. 2016; 1–16 PMID:26655959 Elsevier Ltd.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Zachariae R, Lyby MS, Ritterband L, O’Toole MS. Efficacy of Internet-delivered cognitive-behavioral therapy for insomnia–a systematic review and meta-analysis of randomized controlled trials. Sleep Med Rev. 2015;30:1–10 PMID:26615572.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Melioli T, Bauer S, Franko DL, Moessner M, Ozer F, Chabrol H, Rodgers RF. Reducing eating disorder symptoms and risk factors using the internet: a meta-analytic review. Int J Eat Disord. 2016;49(1):19–31. Scholar
  87. 87.
    Buhrman M, Gordh T, Andersson G. Internet interventions for chronic pain including headache: a systematic review. Internet Interv. 2016;4:17–34. Scholar
  88. 88.
    Riper H, Blankers M, Hadiwijaya H, Cunningham J, Clarke S, Wiers R, Ebert D, Cuijpers P. Effectiveness of guided and unguided low-intensity internet interventions for adult alcohol misuse: a meta-analysis. PLoS One. 2014;9(6). Scholar
  89. 89.
    Andersson E, Enander J, Andrén P, Hedman E, Ljótsson B, Hursti T, Bergström J, Kaldo V, Lindefors N, Andersson G, Rück C. Internet-based cognitive behaviour therapy for obsessive–compulsive disorder: a randomized controlled trial. Psychol Med. 2012;42(10):2193–203 PMID:22348650.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Herbst N, Voderholzer U, Thiel N, Schaub R, Knaevelsrud C, Stracke S, Hertenstein E, Nissen C, Külz AK. No talking, just writing! Efficacy of an Internet-based cognitive behavioral therapy with exposure and response prevention in obsessive compulsive disorder. Psychother Psychosom. 2014;83(3):165–75 PMID:24732962.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lenhard F, Andersson E, Mataix-Cols D, Rück C, Vigerland S, Högström J, Hillborg M, Brander G, Ljungström M, Ljótsson B, Serlachius E. Therapist-guided, internet-delivered cognitive-behavioral therapy for adolescents with obsessive-compulsive disorder: a randomized controlled trial. J Am Acad Child Adolesc Psychiatry. 2017;56(1):10–19.e2. Scholar
  92. 92.
    Storch EA, Caporino NE, Morgan JR, Lewin AB, Rojas A, Brauer L, Larson MJ, Murphy TK. Preliminary investigation of web-camera delivered cognitive-behavioral therapy for youth with obsessive-compulsive disorder. Psychiatry Res. 2011;189(3):407–12 PMID:21684018.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Gottlieb JD et al. Web-based cognitive-behavioral therapy for auditory hallucinations in persons with psychosis: a pilot study. Schizophr Res. 2013;145(1–3):82–7 PMID:23410709 Elsevier.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Harper KM. An Investigation of an Internet-based cognitive behavioral Therapy Program fpr auditory hallucinations. University of North Carolina at Chapel Hill; 2013.Google Scholar
  95. 95.
    Enander J, Andersson E, Mataix-Cols D, Lichtenstein L, Alstroem K, Andersson G, Ljotsson B, Rueck C. Therapist guided internet based cognitive behavioural therapy for body dysmorphic disorder: single blind randomised controlled trial. BMJ-BRITISH Med J. 2016;352.
  96. 96.
    Hidalgo-Mazzei D, Mateu A, Reinares M, Matic A, Vieta E, Colom F. Internet-based psychological interventions for bipolar disorder: review of the present and insights into the future. J Affect Disord. 2015;188:1–13 PMID:26342885.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Andersson E, Walén C, Hallberg J, Paxling B, Dahlin M, Almlöv J, Källström R, Wijma K, Carlbring P, Andersson G. A randomized controlled trial of guided Internet-delivered cognitive behavioral therapy for erectile dysfunction. J Sex Med. 2011;8(10):2800–9 PMID:21797983.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Jones LM, Mccabe MP. The effectiveness of an internet-based psychological treatment program for female sexual dysfunction. J Sex Med. 2011;8(10):2781–92 PMID:21771279.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Schover LR, Canada AL, Yuan Y, Sui D, Neese L, Jenkins R, Rhodes MM. A randomized trial of internet-based versus traditional sexual counseling for couples after localized prostate cancer treatment. Cancer. 2012;118(2):500–9 PMID:21953578.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    van Lankveld JJ, Leusink P, van Diest S, Gijs L, Slob AK. Internet-based brief sextherapy for heterosexual men with sexual dysfunctions: a randomized controlled pilot trial. J Sex Med. 2009;6(8):2224–36.PubMedCrossRefGoogle Scholar
  101. 101.
    Zarski A-C, Berking M, Fackiner C, Rosenau C, Ebert DD. Internet-based guided self-help for vaginal penetration difficulties: results of a randomized controlled pilot trial. J Sex Med. 2017;14(2). Scholar
  102. 102.
    Abbott J-AM, Kaldo V, Klein B, Austin D, Hamilton C, Piterman L, Williams B, Andersson G. A Cluster Randomised Trial of an Internet-Based Intervention Program for Tinnitus Distress in an Industrial Setting. Cogn Behav Ther 2009;38(3):162–73 PMID:19675959.PubMedCrossRefGoogle Scholar
  103. 103.
    Nyenhuis N, Zastrutzki S, Weise C, Jäger B, Kröner-Herwig B. The efficacy of minimal contact interventions for acute tinnitus: a randomised controlled study. Cogn Behav Ther. 2013;42(2):127–38 PMID:22413736.PubMedCrossRefGoogle Scholar
  104. 104.
    Andersson G, Strömgren T, Ström L, Lyttkens L. Randomized controlled trial of internet-based cognitive behavior therapy for distress associated with tinnitus. Psychosom Med. 64(5):810–6 PMID:12271112.PubMedGoogle Scholar
  105. 105.
    Weise C, Kleinstäuber M, Andersson G. Internet-delivered cognitive-behavior therapy for tinnitus. Psychosom Med. 2016;78(4):501–10 PMID:26867083.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kaldo V, Levin S, Widarsson J, Buhrman M, Larsen H-C, Andersson G. Internet versus group cognitive-behavioral treatment of distress associated with tinnitus: a randomized controlled trial. Behav Ther. 2008;39(4):348–59 PMID:19027431.PubMedCrossRefGoogle Scholar
  107. 107.
    Nyenhuis N, Zastrutzki S, Jäger B, Kröner-Herwig B. An internet-based cognitive-behavioural training for acute tinnitus: secondary analysis of acceptance in terms of satisfaction, trial attrition and non-usage attrition. Cogn Behav Ther. 2013;42(2):139–45 PMID:23205617.PubMedCrossRefGoogle Scholar
  108. 108.
    Hesser H, Westin VZ, Andersson G. Acceptance as a mediator in internet-delivered acceptance and commitment therapy and cognitive behavior therapy for tinnitus. J Behav Med. 2014;37(4):756–67 PMID:23881309.PubMedCrossRefGoogle Scholar
  109. 109.
    Hesser H, Gustafsson T, Lundén C, Henrikson O, Fattahi K, Johnsson E, Westin VZ, Carlbring P, Mäki-Torkko E, Kaldo V, Andersson G. A randomized controlled trial of internet-delivered cognitive behavior therapy and acceptance and commitment therapy in the treatment of tinnitus. J Consult Clin Psychol. 2012;80(4):649–61 PMID:22250855.PubMedCrossRefGoogle Scholar
  110. 110.
    Jasper K, Weise C, Conrad I, Andersson G, Hiller W, Kleinstäuber M. Internet-based guided self-help versus group cognitive behavioral therapy for chronic tinnitus: a randomized controlled trial. Psychother Psychosom. 2014;83(4):234–46 PMID:24970708.CrossRefGoogle Scholar
  111. 111.
    Andersson G, Cuijpers P, Carlbring P, Riper H, Hedman E. Guided Internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: a systematic review and meta-analysis. World Psychiatry. 2014;13(3):288–95 PMID:25273302.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Wagner B, Knaevelsrud C, Maercker A. Internet-based cognitive-behavioral therapy for complicated grief: a randomized controlled trial. Death Stud. 2006;30(5):429–53 PMID:16610157.PubMedCrossRefGoogle Scholar
  113. 113.
    Wagner B, Maercker A. A 1.5-year follow-up of an internet-based intervention for complicated grief. J Trauma Stress. 2007;20(4):625–29. Wiley Subscription Services, Inc., A Wiley Company.PubMedCrossRefGoogle Scholar
  114. 114.
    Eisma MC, Boelen PA, van den Bout J, Stroebe W, Schut HAW, Lancee J, Stroebe MS. Internet-based exposure and behavioral activation for complicated grief and rumination: a randomized controlled trial. Behav Ther. 2015;46(6):729–48 Elsevier.PubMedCrossRefGoogle Scholar
  115. 115.
    Luquiens A, Tanguy M-L, Lagadec M, Benyamina A, Aubin H-J, Reynaud M. The efficacy of three modalities of internet-based psychotherapy for non-treatment-seeking online problem gamblers: a randomized controlled trial. J Med Internet Res. 2016;18(2):e36 PMID:26878894.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Carlbring P, Smit F. Randomized trial of internet-delivered self-help with telephone support for pathological gamblers. J Consult Clin Psychol. 2008;76(6):1090–4 PMID:19045977.PubMedCrossRefGoogle Scholar
  117. 117.
    Nijhof SL, Priesterbach LP, Uiterwaal C, Bleijenberg G, Kimpen JLL, Putte EM. Internet-based therapy for adolescents with chronic fatigue syndrome: long-term follow-up. Pediatrics; 2013. p. e1788–95. Scholar
  118. 118.
    Nijhof SL, et al. Effectiveness of internet-based cognitive behavioural treatment for adolescents with chronic fatigue syndrome (FITNET): a randomised controlled trial. Lancet (London, England). 2012;379(9824):1412–8 PMID:22385683 Elsevier.CrossRefGoogle Scholar
  119. 119.
    Franklin JC, Fox KR, Franklin CR, Kleiman EM, Ribeiro JD, Jaroszewski AC, Hooley JM, Nock MK. A brief mobile app reduces nonsuicidal and suicidal self-injury: evidence from three randomized controlled trials. J Consult Clin Psychol. 2016;84(6):544–57 PMID:27018530.PubMedCrossRefGoogle Scholar
  120. 120.
    Mohr DC, Ho J, Hart TL, Baron KG, Berendsen M, Beckner V, Cai X, Cuijpers P, Spring B, Kinsinger SW, Schroder KE, Duffecy J. Control condition design and implementation features in controlled trials: a meta-analysis of trials evaluating psychotherapy for depression. Transl Behav Med. 2014 [cited 2017 May 10];4(4):407–23 PMID:25584090 Springer.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Andersson G, Topooco N, Havik O, Nordgreen T. Internet-supported versus face-to-face cognitive behavior therapy for depression. Expert Rev Neurother. 2016;16(1):55–60 PMID:26610160.PubMedCrossRefGoogle Scholar
  122. 122.
    Carlbring P, Andersson G, Cuijpers P, Riper H, Hedman-Lagerlöf E. Internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: an updated systematic review and meta-analysis. Cogn Behav Ther. 2018;47(1):1–18 PMID:29215315.PubMedCrossRefGoogle Scholar
  123. 123.
    Ebert DD, Berking M, Cuijpers P, Lehr D, P?rtner M, Baumeister H. Increasing the acceptance of internet-based mental health interventions in primary care patients with depressive symptoms. A randomized controlled trial. J Affect Disord. 2015;176. Scholar
  124. 124.
    Baumeister H, Nowoczin L, Lin J, Seifferth H, Seufert J, Laubner K, Ebert DD. Impact of an acceptance facilitating intervention on diabetes patients’ acceptance of Internet-based interventions for depression: a randomized controlled trial. Diabetes Res Clin Pract. 2014;105(1):30–9. Scholar
  125. 125.
    Apolinário-Hagen J, Vehreschild V, Alkoudmani RM. Current views and perspectives on e-mental health: an exploratory survey study for understanding public attitudes toward internet-based psychotherapy in Germany. JMIR Ment Heal. 2017;4(1):e8 PMID:28232298.CrossRefGoogle Scholar
  126. 126.
    Apolinário-Hagen J, Harrer M, Kählke F, Fritsche L, Salewski C, Ebert DD. Public attitudes toward guided internet-based therapies: web-based survey study. JMIR Ment Health. 2018;5(2):e10735 PMID:29764797, JMIR Publications Inc.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Dorow M, Löbner M, Pabst A, Stein J, Riedel-Heller SG. Preferences for depression treatment including internet-based interventions: results from a large sample of primary care patients. Front Psychiatry. 2018;9 Frontiers Media SA.Google Scholar
  128. 128.
    Sethi S, Campbell AJ, Ellis LA. The use of computerized self-help packages to treat adolescent depression and anxiety. J Technol Hum Serv. 2010, 31;28(3):144–60. Routledge.CrossRefGoogle Scholar
  129. 129.
    Lindhiem O, Bennett CB, Rosen D, Silk J. Mobile technology boosts the effectiveness of psychotherapy and behavioral interventions: a meta-analysis. Behav Modif. 2015;39(6):785–804 PMID:26187164.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Kenwright M, Liness S, Marks I. Reducing demands on clinicians by offering computer-aided self-help for phobia/panic. Feasibility study. Br J Psychiatry. 2001;179:456–9 PMID:11689405.PubMedCrossRefGoogle Scholar
  131. 131.
    Marks IM, Kenwright M, McDonough M, Whittaker M, Mataix-Cols D. Saving clinicians’ time by delegating routine aspects of therapy to a computer: a randomized controlled trial in phobia/panic disorder. Psychol Med. 2004 PMID:14971623, Cambridge University Press.Google Scholar
  132. 132.
    Kenter RMF, van de Ven PM, Cuijpers P, Koole G, Niamat S, Gerrits RS, Willems M, van Straten A. Costs and effects of Internet cognitive behavioral treatment blended with face-to-face treatment: results from a naturalistic study. Internet Interv. 2015;2(1):77–83. Scholar
  133. 133.
    Kleiboer A, Smit J, Bosmans J, Ruwaard J, Andersson G, Topooco N, Berger T, Krieger T, Botella C, Ba?os R, Chevreul K, Araya R, Cerga-Pashoja A, Cie?lak R, Rogala A, Vis C, Draisma S, Schaik A, Kemmeren L, Ebert D, Berking M, Funk B, Cuijpers P, Riper H. European COMPARative Effectiveness research on blended Depression treatment versus treatment-as-usual (E-COMPARED): study protocol for a randomized controlled, non-inferiority trial in eight European countries. Trials 2016;17(1).
  134. 134.
    Kooistra LC, Wiersma JE, Ruwaard J, van Oppen P, Smit F, Lokkerbol J, Cuijpers P, Riper H. Blended vs. face-to-face cognitive behavioural treatment for major depression in specialized mental health care: study protocol of a randomized controlled cost-effectiveness trial. BMC Psychiatry 2014;14(1):290 PMID:25326035.Google Scholar
  135. 135.
    Romijn G, Riper H, Kok R, Donker T, Goorden M, Roijen LH Van, Kooistra L, Balkom A Van, Koning J. Cost-effectiveness of blended vs. face-to- face cognitive behavioural therapy for severe anxiety disorders : study protocol of a randomized controlled trial. BMC Psychiatry BMC Psychiatry; 2015;1–10.
  136. 136.
    Vara D, Herrero R, Etchemendy E, Espinoza M, Baños R, García-Palacios A, Lera G, Folch B, Palop-Larrea V, Vázquez P. Efficacy and cost-effectiveness of a blended cognitive behavioral therapy for depression in Spanish primary health care: study protocol for a randomised non-inferiority trial. BMC Psychiatry BioMed Central. 2018;18(1):74.Google Scholar
  137. 137.
    Ebert DD, Cuijpers P, Muñoz RF, Baumeister H. Prevention of mental health disorders using internet and mobile-based interventions: a narrative review and recommendations for future research. Front Psychiatry Front. 2017;8:116.
  138. 138.
    Buntrock C, Ebert DD, Lehr D, Smit F, Riper H, Berking M, Cuijpers P. Effect of a web-based guided self-help intervention for prevention of major depression in adults with subthreshold depression. JAMA. 2016;315(17):1854. American Medical Association.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Buntrock C, Ebert D, Lehr D, Riper H, Smit F, Cuijpers P, Berking M. Effectiveness of a web-based cognitive behavioural intervention for subthreshold depression: pragmatic randomised controlled trial. Psychother Psychosom. 2015;84(6). Scholar
  140. 140.
    Buntrock C, Berking M, Smit F, Lehr D, Nobis S, Riper H, Cuijpers P, Ebert D. Preventing depression in adults with subthreshold depression: health-economic evaluation alongside a pragmatic randomized controlled trial of a web-based intervention. J Med Internet Res. 2017;19(1):e5. Scholar
  141. 141.
    Holländare F, Anthony SA, Randestad M, Tillfors M, Carlbring P, Andersson G, Engström I. Two-year outcome of internet-based relapse prevention for partially remitted depression. Behav Res Ther. 2013. Scholar
  142. 142.
    Klein NS, Kok GD, Burger H, van Valen E, Riper H, Cuijpers P, Dekker J, Smit F, van der Heiden C, Bockting CLH. No sustainable effects of an internet-based relapse prevention program over 24 months in recurrent depression: primary outcomes of a randomized controlled trial. Psychother Psychosom. 2018;87(1):55–57 Karger Publishers.PubMedCrossRefGoogle Scholar
  143. 143.
    Riper H, Blankers M, Hadiwijaya H, Cunningham J, Clarke S, Wiers R, Ebert DD, Cuijpers P. Effectiveness of guided and unguided low-intensity internet interventions for adult alcohol misuse: a meta-analysis. PLoS One. 2014;9(6):e99912 PMID:24937483, Stewart R, editor, Public Library of Science.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Boß L, Lehr D, Schaub MP, Paz Castro R, Riper H, Berking M, Ebert DD. Efficacy of a web‐based intervention with and without guidance for employees with risky drinking: results of a three‐arm randomized controlled trial. Addiction Wiley Online Library; 2017.Google Scholar
  145. 145.
    Ebert DD, Berking M, Thiart H, Riper H, Laferton J, Lehr D. Restoring depleted resources: efficacy and mechanisms of change of an Internet-based unguided recovery training for better sleep and psychological detachment from work. Heal Psychol. 2015;Suppl(1). Scholar
  146. 146.
    Thiart H, Lehr D, Ebert DD, Berking M, Riper H. Log in and breathe out: internet-based recovery training for sleepless employees with work-related strain–results of a randomized controlled trial. Scand J Work Environ Health. 2015; Online Fir.CrossRefGoogle Scholar
  147. 147.
    Lehr D, Heber E, Sieland B, Hillert A, Funk B, Ebert DD. Occupational eMental Health and teachers’ health: a meta-analytic review on the efficacy of internet-based intervention for promoting mental health in teachers | “Occupational eMental Health” in der Lehrergesundheit: Ein metaanalytisches Review zur Wirksa. Pravention und Gesundheitsforderung 2016; Scholar
  148. 148.
    Heber E, Lehr D, Ebert DD, Berking M, Riper H. Web-based and mobile stress management intervention for employees: results of a randomised controlled trial. J Med Internet Res. 2016;18(1):e21. Scholar
  149. 149.
    Ebert DD, Heber E, Berking M, Riper H, Cuijpers P, Funk B, Lehr D. Self-guided internet-based and mobile-based stress management for employees: results of a randomised controlled trial. Occup Environ Med. 2016;73(5). Scholar
  150. 150.
    Ebert DD, Lehr D, Heber E, Riper H, Cuijpers P, Berking M. Internet- and mobile-based stress management for employees with adherence-focused guidance: efficacy and mechanism of change. Scand J Work Environ Health. 2016 Sept 1 [cited 2017 May 2];42(5):382–94 PMID:27249161.CrossRefGoogle Scholar
  151. 151.
    Harrer M, Adam SH, Fleischmann RJ, Baumeister H, Auerbach RP, Bruffaerts R, Cuijpers P, Kessler RC, Berking M, Lehr D, Ebert DD. Effectiveness of an internet- and app-based intervention for college students with elevated stress: results of a randomized controlled trial (in press). J Med Internet Res. 2018.Google Scholar
  152. 152.
    Heber E, Ebert DD, Lehr D, Cuijpers P, Berking M, Nobis S, Riper H. The benefit of web- and computer-based interventions for stress: a systematic review and meta-analysis. J Med Internet Res. 2017;19(2):e32 PMID:28213341.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    van Zoonen K, Buntrock C, Ebert DD, Smit F, Reynolds III CF, Beekman ATF, Cuijpers P. Preventing the onset of major depressive disorder: a meta-analytic review of psychological interventions. Int J Epidemiol. 2014;43(2). Scholar
  154. 154.
    Moreno-Peral P, Conejo-Cerón S, Rubio-Valera M, Fernández A, Navas-Campaña D, Rodríguez-Morejón A, Motrico E, Rigabert A, Luna J de D, Martín-Pérez C, Rodríguez-Bayón A, Ballesta-Rodríguez MI, Luciano JV, Bellón JÁ. Effectiveness of psychological and/or educational interventions in the prevention of anxiety. JAMA Psychiatry. 2017;56(9):1026–33. Wiley, New York.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Üstün TB, Ayuso-Mateos JL, Chatterji S, Mathers C, Murray CJL. Global burden of depressive disorders in the year 2000. Br J psychiatry RCP. 2004;184(5):386–92.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Olesen J, Gustavsson A, Svensson M, Wittchen H, Jönsson B. The economic cost of brain disorders in Europe. Eur J Neurol. 2012;19(1):155–62 Wiley Online Library.CrossRefGoogle Scholar
  157. 157.
    Sobocki P, Jönsson B, Angst J, Rehnberg C. Cost of depression in Europe. J Ment Health Policy Econ. 2006;9(2):87–98 PMID:17007486.PubMedPubMedCentralGoogle Scholar
  158. 158.
    Drummond MF, Sculpher MJ, Torrance GW, O’Brien BJ, Stoddart GL. Methods for the economic evaluation of health care programmes. Oxford: Oxford University Press; 2005.Google Scholar
  159. 159.
    Donker T, Blankers M, Hedman E, Ljotsson B, Petrie K, Christensen H. Economic evaluations of Internet interventions for mental health: a systematic review. Psychol Med. 2015;45(16):3357–76 Cambridge University Press.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Paganini S, Teigelkötter W, Buntrock C, Baumeister H. Economic evaluations of internet- and mobile-based interventions for the treatment and prevention of depression: a systematic review. J Affect Disord. 2017;225:733–55. Elsevier.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Andrews G, Williams AD. Internet psychotherapy and the future of personalized treatment. Depress Anxiety. 2014;31(11):912–5 PMID:25407580.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Williams AD, O’Moore K, Mason E, Andrews G. The effectiveness of internet cognitive behaviour therapy (iCBT) for social anxiety disorder across two routine practice pathways. Internet Interv. 2014;1(4):225–9. Scholar
  163. 163.
    Hedman E, Ljótsson B, Kaldo V, Hesser H, El Alaoui S, Kraepelien M, Andersson E, Rück C, Svanborg C, Andersson G, Lindefors N. Effectiveness of Internet-based cognitive behaviour therapy for depression in routine psychiatric care. J Affect Disord. 2014;155(1):49–58 PMID:24238951.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    El Alaoui S, Hedman E, Ljótsson B, Lindefors N. Long-term effectiveness and outcome predictors of therapist-guided internet-based cognitive-behavioural therapy for social anxiety disorder in routine psychiatric care. BMJ Open. 2015;5(6):e007902 PMID:26105031.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    El Alaoui S, Hedman E, Kaldo V, Hesser H, Kraepelien M, Andersson E, Rück C, Andersson G, Ljótsson B, Lindefors N. Effectiveness of Internet-based cognitive-behavior therapy for social anxiety disorder in clinical psychiatry. J Consult Clin Psychol. 2015;83(5):902–14 PMID:26009780.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Nordgreen T, Gjestad R, Andersson G, Carlbring P, Havik OE. The implementation of guided Internet-based cognitive behaviour therapy for panic disorder in a routine-care setting: effectiveness and implementation efforts. Cogn Behav Ther. 2017;1–14 PMID:28714775.Google Scholar
  167. 167.
    Titov N, Dear BF, Staples LG, Bennett-Levy J, Klein B, Rapee RM, Andersson G, Purtell C, Bezuidenhout G, Nielssen OB. The first 30 months of the MindSpot Clinic: evaluation of a national e-mental health service against project objectives. Aust New Zeal J Psychiatry. 2016;000486741667159 PMID:27733709.Google Scholar
  168. 168.
    Titov N, Dear BF, Staples LG, Bennett-Levy J, Klein B, Rapee RM, Shann C, Richards D, Andersson G, Ritterband L, Purtell C, Bezuidenhout G, Johnston L, Nielssen OB. MindSpot Clinic: an accessible, efficient, and effective online treatment service for anxiety and depression. Psychiatr Serv. 2015;66(10):1043–50 PMID:26130001.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Titov N, Dear B, Nielssen O, Staples L, Hadjistavropoulos H, Nugent M, Adlam K, Nordgreen T, Bruvik KH, Hovland A. ICBT in routine care: a descriptive analysis of successful clinics in five countries. Internet Interv. 2018 Elsevier.Google Scholar
  170. 170.
    Karyotaki E, Riper H, Twisk J, Hoogendoorn A, Kleiboer A, Mira A, Mackinnon A, Meyer B, Botella C, Littlewood E, Andersson G, Christensen H, Klein JP, Schröder J, Bretón-López J, Scheider J, Griffiths K, Farrer L, Huibers MJH, Phillips R, Gilbody S, Moritz S, Berger T, Pop V, Spek V, Cuijpers P. Efficacy of Self-guided Internet-Based Cognitive Behavioral Therapy in the Treatment of Depressive Symptoms. JAMA Psychiatry. 2017. Scholar
  171. 171.
    Ebert DD, Baumeister H. Internet-based self-help interventions for depression in routine care. JAMA Psychiatry. 2017;1(4):205–15. Scholar
  172. 172.
    Lin J, Faust B, Ebert DD, Krämer L, Baumeister H. A web-based acceptance-facilitating intervention for identifying patients’ acceptance, uptake, and adherence of internet-and mobile-based pain interventions: randomized controlled trial. J Med Internet Res. 2018;20(8):e244 Toronto, Canada: JMIR Publications Inc.Google Scholar
  173. 173.
    Littlewood E, Duarte A, Hewitt C, Knowles S, Palmer S, Walker S, Andersen P, Araya R, Barkham M, Bower P, Brabyn S, Brierley G, Cooper C, Gask L, Kessler D, Lester H, Lovell K, Muhammad U, Parry G, Richards DA, Richardson R, Tallon D, Tharmanathan P, White D, Gilbody S. A randomised controlled trial of computerised cognitive behaviour therapy for the treatment of depression in primary care: the Randomised Evaluation of the Effectiveness and Acceptability of Computerised Therapy (REEACT) trial. Health Technol Assess. 2015;19(101):1–174 PMID:26685904.PubMedCentralCrossRefGoogle Scholar
  174. 174.
    Brabyn S, Araya R, Barkham M, Bower P, Cooper C, Duarte A, Kessler D, Knowles S, Lovell K, Littlewood E, Mattock R, Palmer S, Pervin J, Richards D, Tallon D, White D, Walker S, Worthy G, Gilbody S. The second Randomised Evaluation of the Effectiveness, cost-effectiveness and Acceptability of Computerised Therapy (REEACT-2) trial: does the provision of telephone support enhance the effectiveness of computer-delivered cognitive behaviour therapy? A ra. Health Technol Assess (Rockv). 2016;20(89):1–64 PMID:27922448.CrossRefGoogle Scholar
  175. 175.
    Muñoz RF. The efficiency model of support and the creation of digital apothecaries. Clin Psychol Sci Pract. 2017;24(1):46–9. Scholar
  176. 176.
    Mohr DC, Weingardt KR, Reddy M, Schueller SM. Three problems with current digital mental health research and three things we can do about them. Psychiatr Serv. 2017;68(5):427–29. American Psychiatric Association Arlington, VA.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Kaltenthaler E, Parry G, Beverley C, Ferriter M. Computerised cognitive-behavioural therapy for depression: systematic review. Br J Psychiatry. 2008;193(3):181–84 Cambridge University Press.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Lillevoll K, Vangberg H, Griffiths K, Waterloo K, Eisemann M. Uptake and adherence of a self-directed internet-based mental health intervention with tailored e-mail reminders in senior high schools in Norway. BMC Psychiatry. 2014.
  179. 179.
    Whiteside U, Lungu A, Richards J, Simon GE, Clingan S, Siler J, Snyder L, Ludman E. Designing messaging to engage patients in an online suicide prevention intervention: survey results from patients with current suicidal ideation. J Med Internet Res. 2014;16(2) JMIR Publications Inc.Google Scholar
  180. 180.
    Woodford J, Farrand P, Bessant M, Williams C. Recruitment into a guided internet based CBT (iCBT) intervention for depression: lesson learnt from the failure of a prevalence recruitment strategy. Contemp Clin Trials. 2011;32(5):641–8. Scholar
  181. 181.
    Paul CL, Piterman L, Shaw JE, Kirby C, Forshaw KL, Robinson J, Thepwongsa I, Sanson-Fisher RW. Poor uptake of an online intervention in a cluster randomised controlled trial of online diabetes education for rural general practitioners. Trials Engl. 2017;18(1):137 PMID:28335809.Google Scholar
  182. 182.
    Meisel SF, Drury H, Perera-Delcourt RP. Therapists’ attitudes to offering eCBT in an inner-city IAPT service: a survey study. Cogn Behav Ther. 2018;11 Cambridge University Press.Google Scholar
  183. 183.
    Hennemann S, Beutel ME, Zwerenz R. Ready for eHealth? Health professionals’ acceptance and adoption of ehealth interventions in inpatient routine care. J Health Commun. 2017;22(3):274–84 Taylor & Francis.Google Scholar
  184. 184.
    Mitchell N, Gordon PK. Attitudes towards computerised CBT for depression amongst a student population. Behav Cogn Psychother. 2007 [cited 2017 Mar 22];35(04):421–30. Scholar
  185. 185.
    Cranen K, Veld RH in’t, Ijzerman M, Vollenbroek-Hutten M. Change of patients’ perceptions of telemedicine after brief use. Telemed J e-Health. 2011;17(7):530–35. Scholar
  186. 186.
    Baumeister H, Seifferth H, Lin J, Nowoczin L, L?king M, Ebert D. Impact of an acceptance facilitating intervention on patients’ acceptance of internet-based pain interventions: a randomized controlled trial. Clin J Pain. 2015;31(6). Scholar
  187. 187.
    Ebert DD, Berking M, Cuijpers P, Lehr D, Pörtner M, Baumeister H. Increasing the acceptance of internet-based mental health interventions in primary care patients with depressive symptoms. A randomized controlled trial. J Affect Disord. 2015; Scholar
  188. 188.
    Ebert DD, Donkin L, Andersson G, Andrews G, Berger T, Carlbring P, Rozenthal A, Choi I, Laferton JAC, Johansson R, Kleiboer A, Lange A, Lehr D, Reins JA, Funk B, Newby J, Perini S, Riper H, Ruwaard J, Sheeber L, Snoek FJ, Titov N, Ünlü Ince B, Van Bastelaar K, Vernmark K, Van Straten A, Warmerdam L, Salsman N, Cuijpers P. Does Internet-based guided-self-help for depression cause harm? An individual participant data meta-analysis on deterioration rates and its moderators in randomized controlled trials. Psychol Med. 2016;46(13). Scholar
  189. 189.
    Christensen H, Farrer L, Batterham PJ, Mackinnon A, Griffiths KM, Donker T. The effect of a web-based depression intervention on suicide ideation: secondary outcome from a randomised controlled trial in a helpline. BMJ Open. 2013;3(6):1–10 PMID:23811172.CrossRefGoogle Scholar
  190. 190.
    Mewton L, Andrews G. Cognitive behaviour therapy via the internet for depression: a useful strategy to reduce suicidal ideation. J Affect Disord. 2014;170C:78–84 PMID:25233243.Google Scholar
  191. 191.
    Rozental A, Boettcher J, Andersson G, Schmidt B, Carlbring P. Negative effects of internet interventions: a qualitative content analysis of patients’ experiences with treatments delivered online. Cogn Behav Ther. 2015;44(3):223–36 PMID:25705924.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Boettcher J, Rozental A, Andersson G, Carlbring P. Side effects in Internet-based interventions for Social Anxiety Disorder. Internet Interv. 2014;1(1):3–11. Scholar
  193. 193.
    Rozental A, Magnusson K, Boettcher J, Andersson G, Carlbring P. For better or worse: an individual patient data meta-analysis of deterioration among participants receiving Internet-based cognitive behavior therapy. J Consult Clin Psychol. 2017;85(2):160–77 PMID:27775414.PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Wampold BE, Imel ZE. The Great psychotherapy debate. the evidence for what makes psychotherapy work. 2nd ed. New York: Routledge; 2015.CrossRefGoogle Scholar
  195. 195.
    Domhardt M, Geßlein H, von Rezori RE, Baumeister H. Internet‐and mobile‐based interventions for anxiety disorders: a meta‐analytic review of intervention components. Depress Anxiety. 2018 Wiley Online Library.Google Scholar
  196. 196.
    Ebert DD, Berking M, Thiart H, Riper H, Laferton JAC, Cuijpers P, Sieland B, Lehr D. Restoring depleted resources: efficacy and mechanisms of change of an internet-based unguided recovery training for better sleep and psychological detachment from work. Heal Psychol. 2015;34(Suppl):1240–51 PMID:26651465.CrossRefGoogle Scholar
  197. 197.
    Warmerdam L, van Straten A, Jongsma J, Twisk J, Cuijpers P. Online cognitive behavioral therapy and problem-solving therapy for depressive symptoms: exploring mechanisms of change. J Behav Ther Exp Psychiatry. 2010;41(1):64–70 PMID:19913781.PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Ebert DD, Lehr D, Heber E, Riper H, Cuijpers P, Berking M. Internet-and mobile-based stress management for employees with adherence-focused guidance: efficacy and mechanism of change. Scand J Environ Heal. 2016;42(5):382–94.CrossRefGoogle Scholar
  199. 199.
    Boettcher J, Renneberg B, Berger T. Patient expectations in internet-based self-help for social anxiety. Cogn Behav Ther. 2013;42(3):203–14 PMID:23697570.PubMedCrossRefGoogle Scholar
  200. 200.
    Lévesque A, Campbell ANC, Pavlicova M, Hu M-C, Walker R, McClure EA, Ghitza UE, Bailey G, Stitzer M, Nunes EV. Coping strategies as a mediator of internet-delivered psychosocial treatment: secondary analysis from a NIDA CTN multisite effectiveness trial. Addict Behav. 2017;65:74–80 PMID:27776269.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Mogoașe C, Cobeanu O, David O, Giosan C, Szentagotai A. Internet-based psychotherapy for adult depression: what about the mechanisms of change? J Clin Psychol. 2017;73(1):5–64 PMID:27684405.PubMedCrossRefGoogle Scholar
  202. 202.
    Hedman E, Andersson E, Andersson G, Lindefors N, Lekander M, Rück C, Ljótsson B. Mediators in internet-based cognitive behavior therapy for severe health anxiety. PLoS One. 2013;8(10):e77752. Thombs B, editor. Guilford Press.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Graham AL, Papandonatos GD, Cobb CO, Cobb NK, Niaura RS, Abrams DB, Tinkelman DG. Internet and telephone treatment for smoking cessation: mediators and moderators of short-term abstinence. Nicotine Tob Res. 2015;17(3):299–308 PMID:25156528, Oxford University Press.CrossRefGoogle Scholar
  204. 204.
    Ljótsson B, Hesser H, Andersson E, Lindfors P, Hursti T, Rück C, Lindefors N, Andersson G, Hedman E. Mechanisms of change in an exposure-based treatment for irritable bowel syndrome. J Consult Clin Psychol. 2013;81(6):1113–26 PMID:23750460.PubMedCrossRefGoogle Scholar
  205. 205.
    Morgan AJ, Mackinnon AJ, Jorm AF. Behavior change through automated e-mails: mediation analysis of self-help strategy use for depressive symptoms. Behav Res Ther. 2013;51(2):57–62 PMID:23262114.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Alpay L, van der Boog P, Dumaij A. An empowerment-based approach to developing innovative e-health tools for self-management. Health Inf J. 2011;17(4):247–55 Sage Publications Sage UK: London, England.Google Scholar
  207. 207.
    Crisp D, Griffiths K, Mackinnon A, Bennett K, Christensen H. An online intervention for reducing depressive symptoms: secondary benefits for self-esteem, empowerment and quality of life. Psychiatry Res. 2014;216(1):60–66 Elsevier.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Samoocha D, Bruinvels DJ, Elbers NA, Anema JR, van der Beek AJ. Effectiveness of web-based interventions on patient empowerment: a systematic review and meta-analysis. J Med Internet Res. 2010;12. Scholar
  209. 209.
    Kuijpers W, Groen WG, Aaronson NK, van Harten WH. A systematic review of web-based interventions for patient empowerment and physical activity in chronic diseases: relevance for cancer survivors. J Med Internet Res. 2013;15(2) JMIR Publications Inc.Google Scholar
  210. 210.
    Cowpertwait L, Clarke D. Effectiveness of web-based psychological interventions for depression: a meta-analysis. Int J Ment Health Addict. 2013;11(2):247–68. Springer.CrossRefGoogle Scholar
  211. 211.
    Baumeister H, Reichler L, Munzinger M, Lin J. The impact of guidance on Internet-based mental health interventions-a systematic review. Internet Interv. 2014:205–15. Scholar
  212. 212.
    Johansson R, Andersson G. Internet-based psychological treatments for depression. Expert Rev Neurother. 2012;12(7):861–9; quiz 870 PMID:22853793.PubMedCrossRefGoogle Scholar
  213. 213.
    Andersson G, Carlbring P, Berger T, Almlöv J, Cuijpers P. What makes internet therapy work? Cogn Behav Ther. 2009;38(sup1):55–60 PMID:19675956.PubMedCrossRefGoogle Scholar
  214. 214.
    Andersson G, Paxling B, Wiwe M, Vernmark K, Felix CB, Lundborg L, Furmark T, Cuijpers P, Carlbring P. Therapeutic alliance in guided internet-delivered cognitive behavioural treatment of depression, generalized anxiety disorder and social anxiety disorder. Behav Res Ther. 2012;50(9):544–50 PMID:22728647.PubMedCrossRefGoogle Scholar
  215. 215.
    Ebert DD, Hannig W, Tarnowski T, Sieland B, Götzky B, Berking M. Web-based rehabilitation aftercare following inpatient psychosomatic treatment. Rehabilitation (Stuttg). 2013;52(3):164–72 PMID:23761205.CrossRefGoogle Scholar
  216. 216.
    Preschl B, Maercker A, Wagner B. The working alliance in a randomized controlled trial comparing online with face-to-face cognitive-behavioral therapy for depression. BMC Psychiatry. 2011;11(1):189 PMID:22145768.PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Cook JE, Doyle C. Working alliance in online therapy as compared to face-to-face therapy: preliminary results. Cyberpsychol Behav. 2002;5(2):95–105 PMID:12025884.PubMedCrossRefGoogle Scholar
  218. 218.
    Bengtsson J, Nordin S, Carlbring P. Therapists’ Experiences of conducting cognitive behavioural therapy online vis-à-vis face-to-face. Cogn Behav Ther. 2015;1–10 PMID:26090947, Routledge.Google Scholar
  219. 219.
    Knaevelsrud C, Maercker A. Does the quality of the working alliance predict treatment outcome in online psychotherapy for traumatized patients? J Med Internet Res. 2006;8(4):e31 PMID:17213049.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Mohr DC, Cuijpers P, Lehman K. Supportive accountability: a model for providing human support to enhance adherence to eHealth interventions. J Med Internet Res. 2011 Mar 10 [cited 2017 May 15];13(1):e30 PMID:21393123.PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Terhorst Y, Rathner EM, Baumeister H, Sander L. Help from the App-Store? a systematic review of apps for depression (in press). Verhaltenstherapie 2017.Google Scholar
  222. 222.
    Sucala M, Cuijpers P, Muench F, Cardoș R, Soflau R, Dobrean A, Achimas‐Cadariu P, David D. Anxiety: there is an app for that. A systematic review of anxiety apps. Depress Anxiety. 2017;34(6):518–25 Wiley Online Library.PubMedCrossRefGoogle Scholar
  223. 223.
    Neary M, Schueller SM. State of the field of mental health apps. Cogn Behav Pract. 2018 Elsevier.Google Scholar
  224. 224.
    Klein JP, Knaevelsrud C, Bohus M, Ebert DD, Gerlinger G, Günther K, Jacobi C, Löbner M, Riedel-Heller SG, Sander J. Internetbasierte Selbstmanagementinterventionen. Nervenarzt Springer; 2018;1–9.Google Scholar
  225. 225.
    Alpaydin E. Introduction to machine learning. MIT press; 2009. ISBN:0262303264.Google Scholar
  226. 226.
    Yarkoni T, Westfall J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci. 2017;12(6):1100–22 SAGE Publications Sage CA: Los Angeles, CA.Google Scholar
  227. 227.
    Breiman L. Statistical modeling: the two cultures (with comments and a rejoinder by the author). Stat Sci. 2001;16(3):199–231 Institute of Mathematical Statistics.CrossRefGoogle Scholar
  228. 228.
    Ward JS, Barker A. Undefined by data: a survey of big data definitions; 2013. arXiv:13095821.
  229. 229.
    Becker D, van Breda W, Funk B, Hoogendoorn M, Ruwaard J, Riper H. Predictive modeling in e-mental health: a common language framework. Internet Interv Neth. 2018;12:57–67 PMID:30135769.CrossRefGoogle Scholar
  230. 230.
    Wongkoblap A, Vadillo MA, Curcin V. Researching mental health disorders in the era of social media: systematic review. J Med Internet Res. 2017;19(6):e228 PMID:28663166 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  231. 231.
    Kang K, Yoon C, Kim EY. Identifying depressive users in Twitter using multimodal analysis. In: 2016 International conference on big data smart comput (BigComp), IEEE;2016. p. 231–38.Google Scholar
  232. 232.
    Park S, Kim I, Lee SW, Yoo J, Jeong B, Cha M. Manifestation of depression and loneliness on social networks: a case study of young adults on Facebook. In: Proceedings of the 18th ACM conference on comput support cooperative work social computing, ACM; 2015. p. 557–70.Google Scholar
  233. 233.
    Hu Q, Li A, Heng F, Li J, Zhu T. Predicting depression of social media user on different observation windows. In: 2015 IEEE/WIC/ACM International conference on web intelligence agent technology (WI-IAT), IEEE; 2015. p. 361–64.Google Scholar
  234. 234.
    Tsugawa S, Kikuchi Y, Kishino F, Nakajima K, Itoh Y, Ohsaki H. Recognizing depression from twitter activity. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems, ACM; 2015. p. 3187–96.Google Scholar
  235. 235.
    Park S, Lee SW, Kwak J, Cha M, Jeong B. Activities on Facebook reveal the depressive state of users. J Med Internet Res. 2013;15(10) JMIR Publications Inc.Google Scholar
  236. 236.
    Wang X, Zhang C, Sun L. An improved model for depression detection in micro-blog social network. In: 2013 IEEE 13th international conference on data mining workshops, IEEE; 2013. p. 80–87.Google Scholar
  237. 237.
    De Choudhury M, Counts S, Horvitz E. Social media as a measurement tool of depression in populations. In: Proceedings of the 5th annual ACM web science conference, ACM; 2013. p. 47–56.Google Scholar
  238. 238.
    Mowery D, Smith H, Cheney T, Stoddard G, Coppersmith G, Bryan C, Conway M. Understanding depressive symptoms and psychosocial stressors on Twitter: a corpus-based study. J Med Internet Res. 2017;19(2):e48 PMID:28246066 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Reece A. Chronology and patterns of psychiatric morbidity in substance-dependent and medical patients. Australas Psychiatry. 2009;17(2):170–71. US: Informa Healthcare.CrossRefGoogle Scholar
  240. 240.
    Reece AG, Danforth CM. Instagram photos reveal predictive markers of depression. EPJ Data Sci. 2017;6(1):15 SpringerOpen.Google Scholar
  241. 241.
    Lin H, Jia J, Guo Q, Xue Y, Li Q, Huang J, Cai L, Feng L. User-level psychological stress detection from social media using deep neural network. In: Proceedings of the 22nd ACM international conference on multimedia, ACM; 2014. p. 507–16.Google Scholar
  242. 242.
    Schwartz HA, Sap M, Kern ML, Eichstaedt JC, Kapelner A, Agrawal M, Blanco E, Dziurzynski L, Park G, Stillwell D. Predicting individual well-being through the language of social media. In: Biocomput 2016 proceedings of the pacific symposium world scientific; 2016. p. 516–27.Google Scholar
  243. 243.
    Liu P, Tov W, Kosinski M, Stillwell DJ, Qiu L. Do Facebook status updates reflect subjective well-being? Cyberpsychology, Behav Soc Netw. 2015;18(7):373–79 Mary Ann Liebert, Inc., 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.CrossRefGoogle Scholar
  244. 244.
    Settanni M, Azucar D, Marengo D. Predicting individual characteristics from digital traces on social media: a meta-analysis. Cyberpsychology Behav Soc Netw. 2018;21(4):217–28 Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle, NY 10801 USA.CrossRefGoogle Scholar
  245. 245.
    Coppersmith G, Dredze M, Harman C. Quantifying mental health signals in Twitter. In: Proceedings of the workshop on computational linguistics and clinical psychology: from linguistic signal to clinical reality; 2014. p. 51–60.Google Scholar
  246. 246.
    Harman G, Dredze MH. Measuring post traumatic stress disorder in Twitter. In: ICWSM 2014.Google Scholar
  247. 247.
    Chancellor S, Lin Z, Goodman EL, Zerwas S, De Choudhury M. Quantifying and predicting mental illness severity in online pro-eating disorder communities. In: Proceedings of the 19th ACM conference on computer-supported cooperative work & social computing, ACM; 2016. p. 1171–84.Google Scholar
  248. 248.
    Moessner M, Feldhege J, Wolf M, Bauer S. Analyzing big data in social media: text and network analyses of an eating disorder forum. Int J Eat Disord. 2018 PMID:29746710 United States.Google Scholar
  249. 249.
    Song J, Song TM, Seo D-C, Jin JH. Data mining of web-based documents on social networking sites that included suicide-related words among korean adolescents. J Adolesc Health. 2016;59(6):668–73 PMID:27693129 United States.PubMedCrossRefGoogle Scholar
  250. 250.
    Braithwaite SR, Giraud-Carrier C, West J, Barnes MD, Hanson CL. Validating machine learning algorithms for Twitter data against established measures of suicidality. JMIR Ment Heal. 2016;3(2) JMIR Publications Inc.Google Scholar
  251. 251.
    O’Dea B, Wan S, Batterham PJ, Calear AL, Paris C, Christensen H. Detecting suicidality on Twitter. Internet Interv. 2015;2(2):183–88 Elsevier.CrossRefGoogle Scholar
  252. 252.
    Zhang L, Huang X, Liu T, Li A, Chen Z, Zhu T. Using linguistic features to estimate suicide probability of Chinese microblog users. In: International conference on human centered computing, Springer; 2014. p. 549–59.Google Scholar
  253. 253.
    Burnap P, Colombo G, Amery R, Hodorog A, Scourfield J. Multi-class machine classification of suicide-related communication on Twitter. Online Soc networks media. 2017;2:32–44 Elsevier.CrossRefGoogle Scholar
  254. 254.
    Torous J, Larsen ME, Depp C, Cosco TD, Barnett I, Nock MK, Firth J. Smartphones, sensors, and machine learning to advance real-time prediction and interventions for suicide prevention: a review of current progress and next steps. Curr Psychiatry Rep. 2018;20(7):51 PMID:29956120 United States.Google Scholar
  255. 255.
    Kornfield R, Sarma PK, Shah DV, McTavish F, Landucci G, Pe-Romashko K, Gustafson DH. Detecting recovery problems just in time: application of automated linguistic analysis and supervised machine learning to an online substance abuse forum. J Med Internet Res. 2018;20(6):e10136 PMID:29895517 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  256. 256.
    Cepeda MS, Reps J, Fife D, Blacketer C, Stang P, Ryan P. Finding treatment‐resistant depression in real‐world data: how a data‐driven approach compares with expert‐based heuristics. Depress Anxiety. 2017. US: Wiley.PubMedPubMedCentralCrossRefGoogle Scholar
  257. 257.
    Morales S, Barros J, Echavarri O, Garcia F, Osses A, Moya C, Maino MP, Fischman R, Nunez C, Szmulewicz T, Tomicic A. Acute mental discomfort associated with suicide behavior in a clinical sample of patients with affective disorders: ascertaining critical variables using artificial intelligence tools. Front Psychiatry. 2017;8:7 PMID:28210230 Switzerland.Google Scholar
  258. 258.
    Whelan R, Watts R, Orr CA, Althoff RR, Artiges E, Banaschewski T, Barker GJ, Bokde ALW, Buchel C, Carvalho FM, Conrod PJ, Flor H, Fauth-Buhler M, Frouin V, Gallinat J, Gan G, Gowland P, Heinz A, Ittermann B, Lawrence C, Mann K, Martinot J-L, Nees F, Ortiz N, Paillere-Martinot M-L, Paus T, Pausova Z, Rietschel M, Robbins TW, Smolka MN, Strohle A, Schumann G, Garavan H. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 2014;512(7513):185–89 PMID:25043041 England.PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Chekroud AM, Foster D, Zheutlin AB, Gerhard DM, Roy B, Koutsouleris N, Chandra A, Esposti MD, Subramanyan G, Gueorguieva R, Paulus M, Krystal JH. Predicting barriers to treatment for depression in a U.S. National sample: a cross-sectional, proof-of-concept study. Psychiatr Serv. 2018;69(8):927–34 PMID:29962307 United States.PubMedCrossRefPubMedCentralGoogle Scholar
  260. 260.
    Jordan P, Shedden-Mora MC, Lowe B. Predicting suicidal ideation in primary care: an approach to identify easily assessable key variables. Gen Hosp Psychiatry. 2018;51:106–11 PMID:29428582 United States.PubMedCrossRefPubMedCentralGoogle Scholar
  261. 261.
    Tran T, Luo W, Phung D, Harvey R, Berk M, Kennedy RL, Venkatesh S. Risk stratification using data from electronic medical records better predicts suicide risks than clinician assessments. BMC Psychiatry. 2014;14(1):76 BioMed Central.Google Scholar
  262. 262.
    Hoexter MQ, Dougherty DD, Shavitt RG, D’Alcante CC, Duran FLS, Lopes AC, Diniz JB, Batistuzzo MC, Evans KC, Bressan RA, Busatto GF, Miguel EC. Differential prefrontal gray matter correlates of treatment response to fluoxetine or cognitive-behavioral therapy in obsessive–compulsive disorder. Eur Neuropsychopharmacol. 2013;23(7):569–80. Hoexter, Marcelo Q., Department of Psychiatry, University of Sao Paulo Medical School, Rua Ovidio Pires de Campos 785–31 andar Ala Norte-sala 9 (PROTOC), CEP 05403-010, Sao Paulo, Brazil: Elsevier Science.PubMedCrossRefPubMedCentralGoogle Scholar
  263. 263.
    Lueken U, Straube B, Yang Y, Hahn T, Beesdo-Baum K, Wittchen H-U, Konrad C, Strohle A, Wittmann A, Gerlach AL, Pfleiderer B, Arolt V, Kircher T. Separating depressive comorbidity from panic disorder: a combined functional magnetic resonance imaging and machine learning approach. J Affect Disord Neth. 2015;184:182–92 PMID:26093832.CrossRefGoogle Scholar
  264. 264.
    Jimenez-Serrano S, Tortajada S, Garcia-Gomez JM. A mobile health application to predict postpartum depression based on machine learning. Telemed J E Health. 2015;21(7):567–74 PMID:25734829 United States.PubMedCrossRefGoogle Scholar
  265. 265.
    Marzano L, Bardill A, Fields B, Herd K, Veale D, Grey N, Moran P. The application of mHealth to mental health: opportunities and challenges. Lancet Psychiatry. 2015;2(10):942–48 Elsevier.PubMedCrossRefGoogle Scholar
  266. 266.
    Pantelopoulos A, Bourbakis NG. A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans Syst Man, Cybern Part C (Appl Rev IEEE). 2010;40(1):1–12.CrossRefGoogle Scholar
  267. 267.
    Schueller SM, Begale M, Penedo FJ, Mohr DC. Purple: a modular system for developing and deploying behavioral intervention technologies. J Med Internet Res. 2014;16(7) JMIR Publications Inc.Google Scholar
  268. 268.
    Torous J, Kiang M V, Lorme J, Onnela J-P. New tools for new research in psychiatry: a scalable and customizable platform to empower data driven smartphone research. JMIR Ment Health. 2016;3(2) JMIR Publications Inc.Google Scholar
  269. 269.
    Mohr DC, Zhang M, Schueller SM. Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu Rev Clin Psychol. 2017;13:23–47 PMID:28375728 United States.PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Bourla A, Mouchabac S, El Hage W, Ferreri F. e-PTSD: an overview on how new technologies can improve prediction and assessment of Posttraumatic Stress Disorder (PTSD). Eur J Psychotraumatol. 2018;9(sup1):1424448 PMID:29441154 United States.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Trull TJ, Solhan MB, Tragesser SL, Jahng S, Wood PK, Piasecki TM, Watson D. Affective instability: measuring a core feature of borderline personality disorder with ecological momentary assessment. J Abnorm Psychol. 2008;117(3):647 American Psychological Association.Google Scholar
  272. 272.
    Dennis ML, Scott CK, Funk RR. Ecological momentary assessment to predict the risk of relapse. Drug Alcohol Depend. 2015;146:e262. Scholar
  273. 273.
    Chih M-Y, Patton T, McTavish FM, Isham AJ, Judkins-Fisher CL, Atwood AK, Gustafson DH. Predictive modeling of addiction lapses in a mobile health application. J Subst Abuse Treat. 2014;46(1):29–35 PMID:24035143 United States.PubMedCrossRefGoogle Scholar
  274. 274.
    Saeb S, Kording K, Mohr DC. Making activity recognition robust against deceptive behavior. PLoS One. 2015;10(12):e0144795 PMID:26659118 United States.PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Pratap A, Atkins DC, Renn BN, Tanana MJ, Mooney SD, Anguera JA, Arean PA. The accuracy of passive phone sensors in predicting daily mood. Depress Anxiety. 2018 PMID:30129691 United States.Google Scholar
  276. 276.
    Hung GC-L, Yang P-C, Chang C-C, Chiang J-H, Chen Y-Y. Predicting negative emotions based on mobile phone usage patterns: an exploratory study. JMIR Res Protoc. 2016;5(3):e160 PMID:27511748 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  277. 277.
    Jaques N, Taylor S, Azaria A, Ghandeharioun A, Sano A, Picard R. Predicting students’ happiness from physiology, phone, mobility, and behavioral data. In: International conference on affective computing and intelligent interaction and workshops [proceedings]. ACII United States; 2015:222–28 PMID:28515966.Google Scholar
  278. 278.
    Sano A. Measuring college students’ sleep, stress, mental health and wellbeing with wearable sensors and mobile phones. Massachusetts Institute of Technology; 2016 [cited 2017 May 10].
  279. 279.
    Sano A, Taylor S, McHill AW, Phillips AJ, Barger LK, Klerman E, Picard R. Identifying objective physiological markers and modifiable behaviors for self-reported stress and mental health status using wearable sensors and mobile phones: observational study. J Med Internet Res. 2018;20(6):e210 PMID:29884610 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  280. 280.
    Lu H, Frauendorfer D, Rabbi M, Mast MS, Chittaranjan GT, Campbell AT, Gatica-Perez D, Choudhury T. Stresssense: detecting stress in unconstrained acoustic environments using smartphones. In: Proceedings of the 2012 ACM conference on ubiquitous computing, ACM; 2012. p. 351–60.Google Scholar
  281. 281.
    Abbas H, Garberson F, Glover E, Wall DP. Machine learning approach for early detection of autism by combining questionnaire and home video screening. J Am Med Inform Assoc. 2018;25(8):1000–07 PMID:29741630, England.PubMedCrossRefPubMedCentralGoogle Scholar
  282. 282.
    Sathyanarayana A, Joty S, Fernandez-Luque L, Ofli F, Srivastava J, Elmagarmid A, Arora T, Taheri S. Sleep quality prediction from wearable data using deep learning. JMIR mHealth uHealth. 2016;4(4):e125 PMID:27815231 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  283. 283.
    Barnett I, Torous J, Staples P, Sandoval L, Keshavan M, Onnela J-P. Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology. 2018;1 Nature Publishing Group.Google Scholar
  284. 284.
    Depp CA, Thompson WK, Frank E, Swartz HA. Prediction of near-term increases in suicidal ideation in recently depressed patients with bipolar II disorder using intensive longitudinal data. J Affect Disord. 2017;208:363–8 Elsevier.PubMedCrossRefPubMedCentralGoogle Scholar
  285. 285.
    Hofmann SG, Curtiss J, McNally RJ. A complex network perspective on clinical science. Perspect Psychol Sci. 2016;11(5):597–605 PMID:27694457.PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    van de Leemput IA, Wichers M, Cramer AOJ, Borsboom D, Tuerlinckx F, Kuppens P, van Nes EH, Viechtbauer W, Giltay EJ, Aggen SH. Critical slowing down as early warning for the onset and termination of depression. Proc Natl Acad Sci. 2014;111(1):87–92.Google Scholar
  287. 287.
    Fried EI, van Borkulo CD, Cramer AOJ, Boschloo L, Schoevers RA, Borsboom D. Mental disorders as networks of problems: a review of recent insights. Soc Psychiatry Psychiatr Epidemiol. 2017;52(1):1–10. Scholar
  288. 288.
    Wampold BE, Imel ZE. The great psychotherapy debate: the evidence for what makes psychotherapy work. Routledge; 2015. ISBN:1136672605.Google Scholar
  289. 289.
    Loerinc AG, Meuret AE, Twohig MP, Rosenfield D, Bluett EJ, Craske MG. Response rates for CBT for anxiety disorders: need for standardized criteria. Clin Psychol Rev. 2015;42:72–82 Elsevier.PubMedCrossRefPubMedCentralGoogle Scholar
  290. 290.
    Hofmann SG, Asnaani A, Vonk IJJ, Sawyer AT, Fang A. The efficacy of cognitive behavioral therapy: a review of meta-analyses. Cognit Ther Res. 2012;36(5):427–40. Scholar
  291. 291.
    Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. Am J Psychiatry Am Psychiatric Assoc. 2006;163(11):1905–17.PubMedCrossRefPubMedCentralGoogle Scholar
  292. 292.
    Kessler RC. The potential of predictive analytics to provide clinical decision support in depression treatment planning. Curr Opin Psychiatry. 2018;31(1):32–39 Wolters Kluwer.PubMedCrossRefPubMedCentralGoogle Scholar
  293. 293.
    Riley RD, Ensor J, Snell KIE, Debray TPA, Altman DG, Moons KGM, Collins GS. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges. BMJ. 2016;353:i3140 PMID:27334381 England.Google Scholar
  294. 294.
    Gori A, Lauro-Grotto R, Giannini M, Schuldberg D. Predicting treatment outcome by combining different assessment tools: toward an integrative model of decision support in psychotherapy. J Psychother Integr. 2010;20(2):251–69. Gori, Alessio, Department of Psychology, University of Florence, via di San Salvi, 12, 50135, Florence, Italy: Educational Publishing Foundation.CrossRefGoogle Scholar
  295. 295.
    Hoogendoorn M, Berger T, Schulz A, Stolz T, Szolovits P. Predicting social anxiety treatment outcome based on therapeutic email conversations. IEEE J Biomed Health Inf. 2017;21(5):1449–59 IEEE.PubMedCrossRefPubMedCentralGoogle Scholar
  296. 296.
    Lenhard F, Sauer S, Andersson E, Mansson KN, Mataix-Cols D, Ruck C, Serlachius E. Prediction of outcome in internet-delivered cognitive behaviour therapy for paediatric obsessive-compulsive disorder: a machine learning approach. Int J Methods Psychiatr Res. 2018;27(1) PMID:28752937 United States.CrossRefGoogle Scholar
  297. 297.
    Mansson KNT, Frick A, Boraxbekk C-J, Marquand AF, Williams SCR, Carlbring P, Andersson G, Furmark T. Predicting long-term outcome of Internet-delivered cognitive behavior therapy for social anxiety disorder using fMRI and support vector machine learning. Transl Psychiatry 2015;5:e530 PMID:25781229 United States.PubMedPubMedCentralCrossRefGoogle Scholar
  298. 298.
    Askland KD, Garnaat S, Sibrava NJ, Boisseau CL, Strong D, Mancebo M, Greenberg B, Rasmussen S, Eisen J. Prediction of remission in obsessive compulsive disorder using a novel machine learning strategy. Int J Methods Psychiatr Res. 2015;24(2):156–69 Wiley Online Library.PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Sundermann B, Bode J, Lueken U, Westphal D, Gerlach AL, Straube B, Wittchen H-U, Strohle A, Wittmann A, Konrad C, Kircher T, Arolt V, Pfleiderer B. Support vector machine analysis of functional magnetic resonance imaging of interoception does not reliably predict individual outcomes of cognitive behavioral therapy in panic disorder with agoraphobia. Front Psychiatry. 2017;8:99 PMID:28649205, Switzerland.Google Scholar
  300. 300.
    Kessler RC, van Loo HM, Wardenaar KJ, Bossarte RM, Brenner LA, Cai T, Ebert DD, Hwang I, Li J, de Jonge P, Nierenberg AA, Petukhova MV, Rosellini AJ, Sampson NA, Schoevers RA, Wilcox MA, Zaslavsky AM. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Mol Psychiatry. 2016;21(10):1366–71. Scholar
  301. 301.
    Kessler RC, Hwang I, Hoffmire CA, McCarthy JF, Petukhova M V, Rosellini AJ, Sampson NA, Schneider AL, Bradley PA, Katz IR. Developing a practical suicide risk prediction model for targeting high‐risk patients in the Veterans health Administration. Int J Methods Psychiatr Res. 2017;26(3):e1575 Wiley Online Library.Google Scholar
  302. 302.
    Perlis RH. A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biol Psychiatry. 2013;74(1):7–14 Elsevier.PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Mikus A, Hoogendoorn M, Rocha A, Gama J, Ruwaard J, Riper H. Predicting short term mood developments among depressed patients using adherence and ecological momentary assessment data. Internet Interv Neth. 2018;12:105–10 PMID:30135774.CrossRefGoogle Scholar
  304. 304.
    Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, Cannon TD, Krystal JH, Corlett PR. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry. 2016;3(3):243–250 Elsevier.PubMedCrossRefPubMedCentralGoogle Scholar
  305. 305.
    Chekroud AM, Gueorguieva R, Krumholz HM, Trivedi MH, Krystal JH, McCarthy G. Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach. JAMA Psychiatry. 2017;74(4):370–378 American Medical Association.PubMedPubMedCentralCrossRefGoogle Scholar
  306. 306.
  307. 307.
    Bremer V, Becker D, Kolovos S, Funk B, van Breda W, Hoogendoorn M, Riper H. Predicting therapy success and costs for personalized treatment recommendations using baseline characteristics: data-driven analysis. J Med Internet Res. 2018;20(8):e10275 PMID:30131318 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  308. 308.
    Ebert DD, Cuijpers P. It time to invest in the prevention of depression. JAMA Netw. 2018;1(2):e180335. Open American Medical Association.PubMedCrossRefGoogle Scholar
  309. 309.
    Walton A, Nahum‐Shani I, Crosby L, Klasnja P, Murphy S. Optimizing digital integrated care via micro‐randomized trials. Clin Pharmacol Ther. 2018 Wiley Online Library.Google Scholar
  310. 310.
    Collins LM. Optimization of behavioral, biobehavioral, and biomedical interventions: the multiphase optimization strategy (MOST). Springer; 2018. ISBN:3319722069.Google Scholar
  311. 311.
    Nahum-Shani I, Hekler EB, Spruijt-Metz D. Building health behavior models to guide the development of just-in-time adaptive interventions: a pragmatic framework. Heal Psychol. 2015;34(S):1209 American Psychological Association.Google Scholar
  312. 312.
    Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, Murphy SA. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 1–17. Springer US.CrossRefGoogle Scholar
  313. 313.
    Goldstein SP, Evans BC, Flack D, Juarascio A, Manasse S, Zhang F, Forman EM. Return of the JITAI: applying a just-in-time adaptive intervention framework to the development of m-health solutions for addictive behaviors. Int J Behav Med. 2017;24(5):673–82 PMID:28083725 England.PubMedPubMedCentralCrossRefGoogle Scholar
  314. 314.
    Jaimes LG, Llofriu M, Raij A. A stress-free life: just-in-time interventions for stress via real-time forecasting and intervention adaptation. In: BODYNETS 2014-9th international conference on body area networks 2014;1:197–203.
  315. 315.
    Thomas JG, Bond DS. Behavioral response to a just-in-time adaptive intervention (JITAI) to reduce sedentary behavior in obese adults: implications for JITAI optimization. Health Psychol. 2015;34(Suppl):1261–7 PMID:26651467.PubMedCentralCrossRefPubMedGoogle Scholar
  316. 316.
    Spruijt-Metz D, Nilsen W. Dynamic models of behavior for just-in-time adaptive interventions. IEEE Pervasive Comput. 2014;13(3):13–7. Scholar
  317. 317.
    Juarascio AS, Parker MN, Lagacey MA, Godfrey KM. Just-in-time adaptive interventions: a novel approach for enhancing skill utilization and acquisition in cognitive behavioral therapy for eating disorders. Int J Eat Disord. 2018 PMID:30051495 United States.Google Scholar
  318. 318.
    Wahle F, Kowatsch T, Fleisch E, Rufer M, Weidt S. Mobile sensing and support for people with depression: a pilot trial in the wild. JMIR mHealth uHealth. 2016;4(3):e111 PMID:27655245 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Burns MN, Begale M, Duffecy J, Gergle D, Karr CJ, Giangrande E, Mohr DC. Harnessing context sensing to develop a mobile intervention for depression. J Med Internet Res. 2011;13(3):e55 PMID:21840837 Canada.PubMedPubMedCentralCrossRefGoogle Scholar
  320. 320.
    Ben-Zeev D, Kaiser SM, Brenner CJ, Begale M, Duffecy J, Mohr DC. Development and usability testing of FOCUS: a smartphone system for self-management of schizophrenia. Psychiatr Rehbil J. 2013;36(4):289–96 PMID:24015913.CrossRefGoogle Scholar
  321. 321.
    Gustafson DH, McTavish FM, Chih M-Y, Atwood AK, Johnson RA, Boyle MG, Levy MS, Driscoll H, Chisholm SM, Dillenburg L, Isham A, Shah D. A smartphone application to support recovery from alcoholism: a randomized clinical trial. JAMA Psychiatry. 2014;71(5):566–72 PMID:24671165.PubMedPubMedCentralCrossRefGoogle Scholar
  322. 322.
    Pina L, Rowan K, Roseway a, Johns P, Hayes GR, Czerwinski M. In situ cues for ADHD parenting strategies using mobile technology. In: Proceedings of the-PERVASIVEHEALTH 2014 8th international conference on pervasive computing technologies for healthcare 2014. p. 17–24.
  323. 323.
    Forman EM, Goldstein SP, Zhang F, Evans BC, Manasse SM, Butryn ML, Juarascio AS, Abichandani P, Martin GJ, Foster GD. OnTrack: development and feasibility of a smartphone app designed to predict and prevent dietary lapses. Transl Behav Med. 2018 PMID:29617911 England.Google Scholar
  324. 324.
    Luxton DD. Artificial intelligence in behavioral and mental health care. Academic Press; 2015. ISBN:0128007923.Google Scholar
  325. 325.
    DeVault D, Artstein R, Benn G, Dey T, Fast E, Gainer A, Georgila K, Gratch J, Hartholt A, Lhommet M. SimSensei Kiosk: a virtual human interviewer for healthcare decision support. In: Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. International Foundation for Autonomous Agents and Multiagent Systems; 2014. p. 1061–68.Google Scholar
  326. 326.
    Bird T, Mansell W, Wright J, Gaffney H, Tai S. Manage your life online: a web-based randomized controlled trial evaluating the effectiveness of a problem-solving intervention in a student sample. Behav Cogn Psychother. 2018;1–13 PMID:29366432 United States.Google Scholar
  327. 327.
    Burton C, Tatar AS, McKinstry B, Matheson C, Matu S, Moldovan R, Macnab M, Farrow E, David D, Pagliari C, Blanco AS, Wolters M. Pilot randomised controlled trial of Help4Mood, an embodied virtual agent-based system to support treatment of depression. J Telemed Telecare. 2016;22(6):348–355. Burton, Christopher, University of Aberdeen Aberdeen, Aberdeen, United Kingdom: Sage Publications.PubMedCrossRefPubMedCentralGoogle Scholar
  328. 328.
    Crutzen R, Peters G-JY, Portugal SD, Fisser EM, Grolleman JJ. An artificially intelligent chat agent that answers adolescents’ questions related to sex, drugs, and alcohol: an exploratory study. J Adolesc Health. 2011;48(5):514–19 PMID:21501812 United States.PubMedCrossRefPubMedCentralGoogle Scholar
  329. 329.
    Provoost S, Lau HM, Ruwaard J, Riper H. Embodied conversational agents in clinical psychology: a scoping review. J Med Internet Res. 2017;19(5) JMIR Publications Inc.Google Scholar
  330. 330.
    Khoury MJ, Ioannidis JPA. Big data meets public health. Science. 2014;346(6213):1054–55 (80-) American Association for the Advancement of Science.Google Scholar
  331. 331.
    Pearl J. Myth, confusion, and science in causal analysis. 2009.Google Scholar
  332. 332.
    Goldstein BA, Navar AM, Pencina MJ, Ioannidis J. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J Am Med Inf Assoc. 2017;24(1):198–208 Oxford University Press.Google Scholar
  333. 333.
    Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, Vickers AJ, Ransohoff DF, Collins GS. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162(1):W1–W73 American College of Physicians.PubMedCrossRefGoogle Scholar
  334. 334.
    DeMasi O, Kording K, Recht B. Meaningless comparisons lead to false optimism in medical machine learning. PLoS One. 2017;12(9):e0184604 PMID:28949964 United States.PubMedPubMedCentralCrossRefGoogle Scholar
  335. 335.
    Pearl J, MacKenzie D. The book of why: the new science of cause and effect. 1st ed. New York: Basic Books; 2018.Google Scholar
  336. 336.
    Chen JH, Asch SM. Machine learning and prediction in medicine—beyond the peak of inflated expectations. N Engl J Med. 2017;376(26):2507 NIH Public Access.PubMedCrossRefGoogle Scholar
  337. 337.
    Cadwalladr C, Graham-Harrison E. Revealed: 50 million Facebook profiles harvested for Cambridge Analytica in major data breach. Guard 2018;17.Google Scholar
  338. 338.
    Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018.Google Scholar
  339. 339.
    Nahum-Shani I, Smith SN, Spring BJ, Collins LM, Witkiewitz K, Tewari A, Murphy SA. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann Behav Med. 2017;52(6):446–62 Oxford University Press US.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • David Daniel Ebert
    • 1
    Email author
  • Mathias Harrer
    • 2
  • Jennifer Apolinário-Hagen
    • 3
  • Harald Baumeister
    • 4
  1. 1.Department of Clinical PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Clinical Psychology and PsychotherapyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  3. 3.Faculty of Psychology, Department of Health PsychologyFernUniversität in HagenHagenGermany
  4. 4.Clinical Psychology and PsychotherapyUniversity of UlmUlmGermany

Personalised recommendations