Advertisement

Biomarker-Guided Tailored Therapy

  • Jessica Lydiard
  • Charles B. NemeroffEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1192)

Abstract

Personalized medicine aims to integrate a number of characteristics such as genetic and epigenetic variations, other biomarkers, clinical symptoms, and environmental factors in order to predict susceptibility to disease, aid in diagnosis, and identify efficacious treatments with maximum likelihood of favorable response and minimal chance of adverse effects. The use of personalized medicine approaches in psychiatry is underdeveloped, but has a profound potential for improving prevention and treatment. There are a number of studies that have found promising associations between a variety of biomarkers and clinical response to psychopharmacological treatment in various psychiatric disorders. These biomarkers include neuroimaging, electrophysiology, peripheral serum, and plasma biomarkers, and variations in genomics, epigenetics, proteomics, and metabolomics. Ultimately, the best model for precision medicine in complex, multifactorial diseases such as psychiatric illnesses will likely involve integrated methodology that combines information from multiple sources including biologic, clinical, and environmental data. While much progress has been made in the development of valid biomarkers in psychiatric disorders, there is much work to be done in determining their clinical utility.

Keywords

Major depressive disorder Bipolar disorder Schizophrenia Personalized medicine Precision medicine Epigenetics Pharmacogenomics Neuroimaging 

Notes

Financial Disclosures

Dr. Nemeroff has received grants or research support from NIH and the Stanley Medical Research Institute; he has served as a consultant for Bracket (Clintara), Dainippon Pharma, Fortress Biotech, Intra-Cellular Therapies, Janssen Research and Development, Magstim, Prismic Pharmaceuticals, Sumitomo Navitor Pharmaceuticals, Sunovion, Taisho Pharmaceutical, Takeda, TC MSO, and Xhale; he has served on scientific advisory boards for the American Foundation for Suicide Prevention (AFSP), the Anxiety Disorders Association of America (ADAA), Bracket (Clintara), the Brain and Behavior Research Foundation, the Laureate Institute for Brain Research, Skyland Trail, and Xhale and on directorial boards for ADAA, AFSP, and Gratitude America; he is a stockholder in AbbVie, Antares, BI Gen Holdings, Celgene, Corcept Therapeutics, OPKO Health, Seattle Genetics, and Xhale; he receives income or has equity of $10,000 or more from American Psychiatric Publishing, Bracket (Clintara), CME Outfitters, Intra-Cellular Therapies, Magstim, Takeda, and Xhale; and he holds patents on a method and devices for transdermal delivery of lithium (patent 6,375,990B1) and a method of assessing antidepressant drug therapy via transport inhibition of monoamine neurotransmitters by ex vivo assay (patent 7,148,027B2). Dr. Lydiard has no financial interests or relationships to disclose.

References

  1. 1.
    Gadad BS, Jha MK, Czysz A, et al. Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. J Affect Disord. 2018;233:3–14.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Stern S, Linker S, Vadodaria KC, Marchetto MC, Gage FH. Prediction of response to drug therapy in psychiatric disorders. Open Biol. 2018;8(5).PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Garraway LA, Verweij J, Ballman KV. Precision oncology: an overview. J Clin Oncol. 2013;31(15):1803–5.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Biologically-inspired biomarkers for mental disorders. EBioMedicine. 2017;17:1–2.Google Scholar
  5. 5.
    Miller DB, O’Callaghan JP. Personalized medicine in major depressive disorder—opportunities and pitfalls. Metabolism. 2013;62(Suppl 1):S34–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med. 2013;11:132.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Nemeroff CB. The holy grail of psychiatry. Cerebrum. 2015;2015.Google Scholar
  8. 8.
    Petkova E, Ogden RT, Tarpey T, et al. Statistical analysis plan for stage 1 EMBARC (establishing moderators and biosignatures of antidepressant response for clinical care) study. Contemp Clin Trials Commun. 2017;6:22–30.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Nemeroff CB, Widerlov E, Bissette G, et al. Elevated concentrations of CSF corticotropin-releasing factor-like immunoreactivity in depressed patients. Science. 1984;226(4680):1342–4.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Perna GBR, Nemeroff CB. Precision psychiatry: personalized clinical approach to depression. In: Kim YK, editor. Understanding depression, vol. 1. Singapore: Springer; 2018. p. 245–62.Google Scholar
  11. 11.
    Binder EB, Kunzel HE, Nickel T, et al. HPA-axis regulation at in-patient admission is associated with antidepressant therapy outcome in male but not in female depressed patients. Psychoneuroendocrinology. 2009;34(1):99–109.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Greden JF, Gardner R, King D, Grunhaus L, Carroll BJ, Kronfol Z. Dexamethasone suppression tests in antidepressant treatment of melancholia. The process of normalization and test-retest reproducibility. Arch Gen Psychiatry. 1983;40(5):493–500.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Nemeroff CB. Paradise lost: the neurobiological and clinical consequences of child abuse and neglect. Neuron. 2016;89(5):892–909.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Nemeroff CB. Clinical significance of psychoneuroendocrinology in psychiatry: focus on the thyroid and adrenal. J Clin Psychiatry. 1989;50 Suppl:13–20; discussion 21–12.Google Scholar
  15. 15.
    Hage MP, Azar ST. The link between thyroid function and depression. J Thyroid Res. 2012;2012:590648.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Musselman DL, Nemeroff CB. Depression and endocrine disorders: focus on the thyroid and adrenal system. Br J Psychiatry Suppl. 1996;30:123–8.CrossRefGoogle Scholar
  17. 17.
    Eller T, Metskula K, Talja I, Maron E, Uibo R, Vasar V. Thyroid autoimmunity and treatment response to escitalopram in major depression. Nord J Psychiatry. 2010;64(4):253–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kirkegaard C, Norlem N, Lauridsen UB, Bjorum N. Prognostic value of thyrotropin-releasing hormone stimulation test in endogenous depression. Acta Psychiatr Scand. 1975;52(3):170–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Amsterdam JD, Fava M, Maislin G, Rosenbaum J, Hornig-Rohan M. TRH stimulation test as a predictor of acute and long-term antidepressant response in major depression. J Affect Disord. 1996;38(2–3):165–72.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gendall KA, Joyce PR, Mulder RT, Luty SE. Thyroid indices and response to fluoxetine and nortriptyline in major depression. J Psychopharmacol. 2003;17(4):431–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Joffe RT, Singer W. The effect of tricyclic antidepressants on basal thyroid hormone levels in depressed patients. Pharmacopsychiatry. 1990;23(2):67–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kusalic M, Engelsmann F, Bradwejn J. Thyroid functioning during treatment for depression. J Psychiatry Neurosci. 1993;18(5):260–3.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Brady KT, Anton RF. The thyroid axis and desipramine treatment in depression. Biol Psychiatry. 1989;25(6):703–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Iosifescu DV, Nierenberg AA, Mischoulon D, et al. An open study of triiodothyronine augmentation of selective serotonin reuptake inhibitors in treatment-resistant major depressive disorder. J Clin Psychiatry. 2005;66(8):1038–42.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013;150(3):736–44.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hiles SA, Baker AL, de Malmanche T, Attia J. Interleukin-6, C-reactive protein and interleukin-10 after antidepressant treatment in people with depression: a meta-analysis. Psychol Med. 2012;42(10):2015–26.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Chang HH, Lee IH, Gean PW, et al. Treatment response and cognitive impairment in major depression: association with C-reactive protein. Brain Behav Immun. 2012;26(1):90–5.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Jha MK, Minhajuddin A, Gadad BS, et al. Can C-reactive protein inform antidepressant medication selection in depressed outpatients? Findings from the CO-MED trial. Psychoneuroendocrinology. 2017;78:105–13.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Miller AH, Trivedi MH, Jha MK. Is C-reactive protein ready for prime time in the selection of antidepressant medications? Psychoneuroendocrinology. 2017;84:206.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Raison CL, Rutherford RE, Woolwine BJ, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70(1):31–41.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Dahl J, Ormstad H, Aass HC, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology. 2014;45:77–86.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hannestad J, DellaGioia N, Bloch M. The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology. 2011;36(12):2452–9.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Schroeter ML, Abdul-Khaliq H, Diefenbacher A, Blasig IE. S100B is increased in mood disorders and may be reduced by antidepressive treatment. NeuroReport. 2002;13(13):1675–8.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Schroeter ML, Sacher J, Steiner J, Schoenknecht P, Mueller K. Serum S100B represents a new biomarker for mood disorders. Curr Drug Targets. 2013;14(11):1237–48.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jang BS, Kim H, Lim SW, Jang KW, Kim DK. Serum S100B levels and major depressive disorder: its characteristics and role in antidepressant response. Psychiatry Investig. 2008;5(3):193–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fu CH, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    McGrath CL, Kelley ME, Holtzheimer PE, et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry. 2013;70(8):821–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    McGrath CL, Kelley ME, Dunlop BW, Holtzheimer PE 3rd, Craighead WE, Mayberg HS. Pretreatment brain states identify likely nonresponse to standard treatments for depression. Biol Psychiatry. 2014;76(7):527–35.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dunlop BW, Rajendra JK, Craighead WE, et al. Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am J Psychiatry. 2017;174(6):533–45.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Dichter GS, Gibbs D, Smoski MJ. A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord. 2015;172:8–17.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Widge AS, Bilge MT, Montana R, Chang W, Rodriguez CI, Deckersbach T, Carpenter LL, Kalin NH, Nemeroff CB. Electroencephalographic biomarkers for treatment response prediction in major depressive illness: a meta-analysis. Am J Psychiatry. 2018 (In Press).Google Scholar
  42. 42.
    Tansey KE, Guipponi M, Hu X, et al. Contribution of common genetic variants to antidepressant response. Biol Psychiatry. 2013;73(7):679–82.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Ising M, Lucae S, Binder EB, et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry. 2009;66(9):966–75.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    O’Connell CP, Goldstein-Piekarski AN, Nemeroff CB, et al. Antidepressant outcomes predicted by genetic variation in corticotropin-releasing hormone binding protein. Am J Psychiatry. 2017:appiajp201717020172.Google Scholar
  45. 45.
    Binder EB, Owens MJ, Liu W, et al. Association of polymorphisms in genes regulating the corticotropin-releasing factor system with antidepressant treatment response. Arch Gen Psychiatry. 2010;67(4):369–79.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Binder EB, Salyakina D, Lichtner P, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet. 2004;36(12):1319–25.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Smits KM, Smits LJ, Peeters FP, et al. The influence of 5-HTTLPR and STin2 polymorphisms in the serotonin transporter gene on treatment effect of selective serotonin reuptake inhibitors in depressive patients. Psychiatr Genet. 2008;18(4):184–90.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Porcelli S, Drago A, Fabbri C, Gibiino S, Calati R, Serretti A. Pharmacogenetics of antidepressant response. J Psychiatry Neurosci. 2011;36(2):87–113.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Durham LK, Webb SM, Milos PM, Clary CM, Seymour AB. The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder. Psychopharmacology. 2004;174(4):525–9.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Arias B, Catalan R, Gasto C, Gutierrez B, Fananas L. 5-HTTLPR polymorphism of the serotonin transporter gene predicts non-remission in major depression patients treated with citalopram in a 12-weeks follow up study. J Clin Psychopharmacol. 2003;23(6):563–7.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Peters EJ, Slager SL, McGrath PJ, Knowles JA, Hamilton SP. Investigation of serotonin-related genes in antidepressant response. Mol Psychiatry. 2004;9(9):879–89.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Pollock BG, Ferrell RE, Mulsant BH, et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology. 2000;23(5):587–90.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kato M, Fukuda T, Wakeno M, et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(1):115–23.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Illi A, Setala-Soikkeli E, Viikki M, et al. 5-HTR1A, 5-HTR2A, 5-HTR6, TPH1 and TPH2 polymorphisms and major depression. NeuroReport. 2009;20(12):1125–8.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Zeier Z, Carpenter LL, Kalin NH, et al. Clinical implementation of pharmacogenetic decision support tools for antidepressant drug prescribing. Am J Psychiatry. 2018:appiajp201817111282.Google Scholar
  56. 56.
    Zubenko GS, Sommer BR, Cohen BM. On the marketing and use of pharmacogenetic tests for psychiatric treatment. JAMA Psychiatry. 2018.Google Scholar
  57. 57.
    Oedegaard KJ, Alda M, Anand A, et al. The pharmacogenomics of bipolar disorder study (PGBD): identification of genes for lithium response in a prospective sample. BMC Psychiatry. 2016;16:129.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Geoffroy PA, Bellivier F, Leboyer M, Etain B. Can the response to mood stabilizers be predicted in bipolar disorder? Front Biosci (Elite Ed). 2014;6:120–38.CrossRefGoogle Scholar
  59. 59.
    Berk M, Hallam KT, McGorry PD. The potential utility of a staging model as a course specifier: a bipolar disorder perspective. J Affect Disord. 2007;100(1–3):279–81.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Perry A, Tarrier N, Morriss R, McCarthy E, Limb K. Randomised controlled trial of efficacy of teaching patients with bipolar disorder to identify early symptoms of relapse and obtain treatment. BMJ. 1999;318(7177):149–53.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kim YK, Jung HG, Myint AM, Kim H, Park SH. Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord. 2007;104(1–3):91–5.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kim YK, Suh IB, Kim H, et al. The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs. Mol Psychiatry. 2002;7(10):1107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Su KP, Leu SJ, Yang YY, Shen WW, Chou YM, Tsai SY. Reduced production of interferon-gamma but not interleukin-10 in bipolar mania and subsequent remission. J Affect Disord. 2002;71(1–3):205–9.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Guloksuz S, Cetin EA, Cetin T, Deniz G, Oral ET, Nutt DJ. Cytokine levels in euthymic bipolar patients. J Affect Disord. 2010;126(3):458–62.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Rapaport MH, Guylai L, Whybrow P. Immune parameters in rapid cycling bipolar patients before and after lithium treatment. J Psychiatr Res. 1999;33(4):335–40.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Maes M, Bosmans E, Calabrese J, Smith R, Meltzer HY. Interleukin-2 and interleukin-6 in schizophrenia and mania: effects of neuroleptics and mood stabilizers. J Psychiatr Res. 1995;29(2):141–52.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Boufidou F, Nikolaou C, Alevizos B, Liappas IA, Christodoulou GN. Cytokine production in bipolar affective disorder patients under lithium treatment. J Affect Disord. 2004;82(2):309–13.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Belvederi Murri M, Prestia D, Mondelli V, et al. The HPA axis in bipolar disorder: systematic review and meta-analysis. Psychoneuroendocrinology. 2016;63:327–42.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Girshkin L, Matheson SL, Shepherd AM, Green MJ. Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis. Psychoneuroendocrinology. 2014;49:187–206.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gonzalez SD, Williams AJ, Blacker CJ, et al. Putative biological predictors of treatment response in bipolar disorders. Personalized Medicine in Psychiatry. 2017;1–2:39–58.CrossRefGoogle Scholar
  71. 71.
    Krishna VN, Thunga R, Unnikrishnan B, et al. Association between bipolar affective disorder and thyroid dysfunction. Asian J Psychiatr. 2013;6(1):42–5.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Cole DP, Thase ME, Mallinger AG, et al. Slower treatment response in bipolar depression predicted by lower pretreatment thyroid function. Am J Psychiatry. 2002;159(1):116–21.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Barbuti M, Carvalho AF, Kohler CA, et al. Thyroid autoimmunity in bipolar disorder: a systematic review. J Affect Disord. 2017;221:97–106.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Tunca Z, Ozerdem A, Ceylan D, et al. Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: the role of lithium. J Affect Disord. 2014;166:193–200.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Hashimoto R, Takei N, Shimazu K, Christ L, Lu B, Chuang DM. Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology. 2002;43(7):1173–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Pandey GN, Rizavi HS, Dwivedi Y, Pavuluri MN. Brain-derived neurotrophic factor gene expression in pediatric bipolar disorder: effects of treatment and clinical response. J Am Acad Child Adolesc Psychiatry. 2008;47(9):1077–85.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Chang YC, Rapoport SI, Rao JS. Chronic administration of mood stabilizers upregulates BDNF and bcl-2 expression levels in rat frontal cortex. Neurochem Res. 2009;34(3):536–41.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gonzalez SD, Williams AJ, Blacker CJ, Voort JLV, Schak KM, Nemeroff CB, Widge AS, Tohen M. Putative biological predictors of treatment response in bipolar disorders. Pers Med Psychiatry. 2017;1–2:39–58.CrossRefGoogle Scholar
  79. 79.
    Grande I, Kapczinski F, Stertz L, et al. Peripheral brain-derived neurotrophic factor changes along treatment with extended release quetiapine during acute mood episodes: an open-label trial in drug-free patients with bipolar disorder. J Psychiatr Res. 2012;46(11):1511–4.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Dias VV, Brissos S, Frey BN, Andreazza AC, Cardoso C, Kapczinski F. Cognitive function and serum levels of brain-derived neurotrophic factor in patients with bipolar disorder. Bipolar Disord. 2009;11(6):663–71.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Barbosa IG, Huguet RB, Mendonca VA, et al. Increased plasma levels of brain-derived neurotrophic factor in patients with long-term bipolar disorder. Neurosci Lett. 2010;475(2):95–8.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Fernandes BS, Gama CS, Kauer-Sant’Anna M, Lobato MI, Belmonte-de-Abreu P, Kapczinski F. Serum brain-derived neurotrophic factor in bipolar and unipolar depression: a potential adjunctive tool for differential diagnosis. J Psychiatr Res. 2009;43(15):1200–4.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kruger S, Alda M, Young LT, Goldapple K, Parikh S, Mayberg HS. Risk and resilience markers in bipolar disorder: brain responses to emotional challenge in bipolar patients and their healthy siblings. Am J Psychiatry. 2006;163(2):257–64.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Suwalska A, Sobieska M, Rybakowski JK. Serum brain-derived neurotrophic factor in euthymic bipolar patients on prophylactic lithium therapy. Neuropsychobiology. 2010;62(4):229–34.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    de Sousa RT, van de Bilt MT, Diniz BS, et al. Lithium increases plasma brain-derived neurotrophic factor in acute bipolar mania: a preliminary 4-week study. Neurosci Lett. 2011;494(1):54–6.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Tramontina JF, Andreazza AC, Kauer-Sant’anna M, et al. Brain-derived neurotrophic factor serum levels before and after treatment for acute mania. Neurosci Lett. 2009;452(2):111–3.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Fernandes BS, Gama CS, Cereser KM, et al. Brain-derived neurotrophic factor as a state-marker of mood episodes in bipolar disorders: a systematic review and meta-regression analysis. J Psychiatr Res. 2011;45(8):995–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Fleck DE, Ernest N, Adler CM, et al. Prediction of lithium response in first-episode mania using the LITHium Intelligent Agent (LITHIA): pilot data and proof-of-concept. Bipolar Disord. 2017;19(4):259–72.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Seeberg I, Kjaerstad HL, Miskowiak KW. Neural and behavioral predictors of treatment efficacy on mood symptoms and cognition in mood disorders: a systematic review. Front Psychiatry. 2018;9(337).Google Scholar
  90. 90.
    Turecki G, Grof P, Grof E, et al. Mapping susceptibility genes for bipolar disorder: a pharmacogenetic approach based on excellent response to lithium. Mol Psychiatry. 2001;6(5):570–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lovlie R, Berle JO, Stordal E, Steen VM. The phospholipase C-gamma1 gene (PLCG1) and lithium-responsive bipolar disorder: re-examination of an intronic dinucleotide repeat polymorphism. Psychiatr Genet. 2001;11(1):41–3.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Turecki G, Grof P, Cavazzoni P, et al. Evidence for a role of phospholipase C-gamma1 in the pathogenesis of bipolar disorder. Mol Psychiatry. 1998;3(6):534–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Chen CH, Lee CS, Lee MT, et al. Variant GADL1 and response to lithium therapy in bipolar I disorder. N Engl J Med. 2014;370(2):119–28.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kotambail A, Mathur A, Bhat SM, Rai PS, Sharma PS, Satyamoorthy K. GADL1 gene polymorphisms and lithium response in bipolar I disorder: lack of association from an Indian population. Psychiatr Genet. 2015;25(1):39–40.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    International Consortium on Lithium G, Amare AT, Schubert KO, et al. Association of polygenic score for schizophrenia and HLA antigen and inflammation genes with response to lithium in bipolar affective disorder: a genome-wide association study. JAMA Psychiatry. 2018;75(1):65–74.Google Scholar
  96. 96.
    Duffy A, Alda M, Milin R, Grof P. A consecutive series of treated affected offspring of parents with bipolar disorder: is response associated with the clinical profile? Can J Psychiatry. 2007;52(6):369–76.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Campos-de-Sousa S, Guindalini C, Tondo L, et al. Nuclear receptor rev-erb-{alpha} circadian gene variants and lithium carbonate prophylaxis in bipolar affective disorder. J Biol Rhythms. 2010;25(2):132–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Serretti A, Lilli R, Mandelli L, Lorenzi C, Smeraldi E. Serotonin transporter gene associated with lithium prophylaxis in mood disorders. Pharmacogenomics J. 2001;1(1):71–7.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Rybakowski JK, Suwalska A, Czerski PM, Dmitrzak-Weglarz M, Leszczynska-Rodziewicz A, Hauser J. Prophylactic effect of lithium in bipolar affective illness may be related to serotonin transporter genotype. Pharmacol Rep. 2005;57(1):124–7.PubMedPubMedCentralGoogle Scholar
  100. 100.
    Lee HY, Kim YK. Catechol-O-methyltransferase Val158Met polymorphism affects therapeutic response to mood stabilizer in symptomatic manic patients. Psychiatry Res. 2010;175(1–2):63–6.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Light GA, Swerdlow NR. Neurophysiological biomarkers informing the clinical neuroscience of schizophrenia: mismatch negativity and prepulse inhibition of startle. Curr Top Behav Neurosci. 2014;21:293–314.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Leucht S, Tardy M, Komossa K, et al. Antipsychotic drugs versus placebo for relapse prevention in schizophrenia: a systematic review and meta-analysis. Lancet. 2012;379(9831):2063–71.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Perkovic MN, Erjavec GN, Strac DS, Uzun S, Kozumplik O, Pivac N. Theranostic biomarkers for schizophrenia. Int J Mol Sci. 2017;18(4).CrossRefGoogle Scholar
  104. 104.
    Miller BJ, Buckley P, Seabolt W, Mellor A, Kirkpatrick B. Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biol Psychiatry. 2011;70(7):663–71.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Tourjman V, Kouassi E, Koue ME, et al. Antipsychotics’ effects on blood levels of cytokines in schizophrenia: a meta-analysis. Schizophr Res. 2013;151(1–3):43–7.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Mondelli V, Ciufolini S, Belvederi Murri M, et al. Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophr Bull. 2015;41(5):1162–70.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bradley AJ, Dinan TG. A systematic review of hypothalamic-pituitary-adrenal axis function in schizophrenia: implications for mortality. J Psychopharmacol. 2010;24(4 Suppl):91–118.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Green MJ, Matheson SL, Shepherd A, Weickert CS, Carr VJ. Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry. 2011;16(9):960–72.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000;157(4):514–20.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Colibazzi T, Yang Z, Horga G, et al. Aberrant temporal connectivity in persons at clinical high risk for psychosis. Biol Psychiatry Cogn Neurosci Neuroimaging. 2017;2(8):696–705.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Reynolds GP, Yao Z, Zhang X, Sun J, Zhang Z. Pharmacogenetics of treatment in first-episode schizophrenia: D3 and 5-HT2C receptor polymorphisms separately associate with positive and negative symptom response. Eur Neuropsychopharmacol. 2005;15(2):143–51.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    McClay JL, Adkins DE, Aberg K, et al. Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol Psychiatry. 2011;16(1):76–85.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Zhang JP, Robinson DG, Gallego JA, et al. Association of a schizophrenia risk variant at the DRD2 locus with antipsychotic treatment response in first-episode psychosis. Schizophr Bull. 2015;41(6):1248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Schizophrenia Working Group of the Psychiatric Genomics C. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–427.Google Scholar
  115. 115.
    Ikeda M, Yamanouchi Y, Kinoshita Y, et al. Variants of dopamine and serotonin candidate genes as predictors of response to risperidone treatment in first-episode schizophrenia. Pharmacogenomics. 2008;9(10):1437–43.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Wynn JK, Sugar C, Horan WP, Kern R, Green MF. Mismatch negativity, social cognition, and functioning in schizophrenia patients. Biol Psychiatry. 2010;67(10):940–7.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Lee SH, Sung K, Lee KS, Moon E, Kim CG. Mismatch negativity is a stronger indicator of functional outcomes than neurocognition or theory of mind in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:213–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Light GA, Swerdlow NR. Future clinical uses of neurophysiological biomarkers to predict and monitor treatment response for schizophrenia. Ann N Y Acad Sci. 2015;1344:105–19.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Umbricht D, Krljes S. Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res. 2005;76(1):1–23.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Vinogradov S, Fisher M, de Villers-Sidani E. Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology. 2012;37(1):43–76.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Fisher M, Holland C, Merzenich MM, Vinogradov S. Using neuroplasticity-based auditory training to improve verbal memory in schizophrenia. Am J Psychiatry. 2009;166(7):805–11.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Menning H, Roberts LE, Pantev C. Plastic changes in the auditory cortex induced by intensive frequency discrimination training. NeuroReport. 2000;11(4):817–22.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kawakubo Y, Kamio S, Nose T, et al. Phonetic mismatch negativity predicts social skills acquisition in schizophrenia. Psychiatry Res. 2007;152(2–3):261–5.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Perna G, Grassi M, Caldirola D, Nemeroff CB. The revolution of personalized psychiatry: will technology make it happen sooner? Psychol Med. 2018;48(5):705–13.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Williams LM, Rush AJ, Koslow SH, et al. International study to predict optimized treatment for depression (iSPOT-D), a randomized clinical trial: rationale and protocol. Trials. 2011;12:4.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Adams Z, McClure EA, Gray KM, Danielson CK, Treiber FA, Ruggiero KJ. Mobile devices for the remote acquisition of physiological and behavioral biomarkers in psychiatric clinical research. J Psychiatr Res. 2017;85:1–14.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Department of PsychiatryUniversity of Texas Austin, Dell Medical SchoolAustinUSA

Personalised recommendations