Advertisement

Signal Processing in the Brainstem Auditory Nuclei

  • Harunori Ohmori
Chapter

Abstract

Neurons in ascending auditory nuclei are specialized to extract and process the sound signals that are encoded as firing patterns of auditory nerve fibers (ANFs). Sound representing temporal or level features are extracted and transmitted in separate auditory pathways. The interaural difference signal of each sound feature, such as the interaural time difference (TD) or interaural level difference (ILD), is also processed and encoded as new signals in separate auditory nuclei in the brainstem. Accordingly, the temporal and the level signal of sounds are considered independent and to have different roles in the auditory system. However, they are interactive with each other, and enhance precision of the sound source localization cooperatively. The processing of temporal information ITD is affected by sound level signal through the inhibitory circuits, and the sound-phase signal affected the processing of ILD and direction sensitivity of the ILD-sensitive neurons. We investigated the auditory signal processing in the chicken brainstem nuclei. This selection of experimental animal was somewhat accidental as I have stated it already (in preface). However, the avian species was turned out to be one of the ideal species for auditory research because of the simplicity in structure of neural networks. Despite of the simplicity, the sound features are processed based on the same principle as that in the mammalian auditory system.

Keywords

Coincidence detection Feature extraction Binaural processing Interaural time difference Interaural level difference Inhibitory circuits 

References

  1. Araki T, Otani T (1955) Response of single motoneurons to direct stimulation in toad’s spinal cord. J Neurophysiol 18(5):472–485PubMedCrossRefGoogle Scholar
  2. Banks MI, Pearce RA, Smith PH (1993) Hyperpolarization-activated cation current (Ih) in neurons of the medial nucleus of the trapezoid body: voltage-clamp analysis and enhancement by norepinephrine and cAMP suggest a modulatory mechanism in the auditory brain stem. J Neurophysiol 70(4):1420–1432PubMedCrossRefPubMedCentralGoogle Scholar
  3. Barnes-Davies M, Forsythe ID (1995) Pre- and postsynaptic glutamate receptors at a giant excitatory synapse in rat auditory brainstem slices. J Physiol 488(Pt 2):387–406PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bender KJ, Trussell LO (2012) The physiology of the axon initial segment. Annu Rev Neurosci 35:249–265PubMedCrossRefGoogle Scholar
  5. Bobker DH, Williams JT (1989) Serotonin augments the cationic current Ih in central neurons. Neuron 2(6):1535–1540PubMedCrossRefGoogle Scholar
  6. Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417(6888):543–547PubMedCrossRefGoogle Scholar
  7. Brenowitz S, Trussell LO (2001) Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus. J Neurosci 21(23):9487–9498PubMedPubMedCentralCrossRefGoogle Scholar
  8. Brückner S, Hyson RL (1998) Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick. Eur J Neurosci 10(11):3438–3450PubMedCrossRefGoogle Scholar
  9. Burger RM, Cramer KS, Pfeiffer JD, Rubel EW (2005) Avian superior olivary nucleus provides divergent inhibitory input to parallel auditory pathways. J Comp Neurol 481(1):6–18PubMedCrossRefGoogle Scholar
  10. Calford MB, Piddington RW (1988) Avian interaural canal enhances interaural delay. J Comp Physiol 162:503–510CrossRefGoogle Scholar
  11. Cant NB, Hyson RL (1992) Projections from the lateral nucleus of the trapezoid body to the medial superior olivary nucleus in the gerbil. Hear Res 58(1):26–34PubMedCrossRefGoogle Scholar
  12. Carr CE, Fujita I, Konishi M (1989) Distribution of GABAergic neurons and terminals in the auditory system of the barn owl. J Comp Neurol 286(2):190–207PubMedCrossRefGoogle Scholar
  13. Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10(10):3227–3246PubMedPubMedCentralCrossRefGoogle Scholar
  14. Carr CE, Boudreau RE (1991) Central projections of auditory nerve fibers in the barn owl. J Comp Neurol 314(2):306–318PubMedCrossRefGoogle Scholar
  15. Carr CE, Boudreau RE (1993) An axon with a myelinated initial segment in the bird auditory system. Brain Res 628(1–2):330–334PubMedCrossRefGoogle Scholar
  16. Cherubini E, Gaiarsa JL, Ben-Ari Y (1991) GABA: an excitatory transmitter in early postnatal life. Trends Neurosci 14:515–519PubMedCrossRefGoogle Scholar
  17. Chuhma N, Ohmori H (1998) Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. J Neurosci 18(1):512–520PubMedPubMedCentralCrossRefGoogle Scholar
  18. Clark BA, Monsivais P, Branco T, London M, Hausser M (2005) The site of action potential initiation in cerebellar Purkinje neurons. Nat Neurosci 8:137–139PubMedCrossRefGoogle Scholar
  19. Code RA, Burd GD, Rubel EW (1989) Development of GABA immunoreactivity in brainstem auditory nuclei of the chick: ontogeny of gradients in terminal staining. J Comp Neurol 284(4):504–518PubMedCrossRefGoogle Scholar
  20. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237PubMedCrossRefGoogle Scholar
  21. Cook DL, Schwindt PC, Grande LA, Spain WJ (2003) Synaptic depression in the localization of sound. Nature 421(6918):66–70PubMedCrossRefGoogle Scholar
  22. Coombs JS, Curtis DR, Eccles JC (1957) The generation of impulses in motoneurones. J Physiol 139(2):232–249PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cudmore RH, Fronzaroli-Molinieres L, Giraud P, Debanne D (2010) Spike-time precision and network synchrony are controlled by the homeostatic regulation of the D-type potassium current. J Neurosci 30(38):12885–12895PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dasika VK, White JA, Carney LH, Colburn HS (2005) Effects of inhibitory feedback in a network model of avian brain stem. J Neurophysiol 94(1):400–414PubMedCrossRefGoogle Scholar
  25. DiFrancesco D, Tromba C (1988) Muscarinic control of the hyperpolarization-activated current (if) in rabbit sino-atrial node myocytes. J Physiol 405:493–510PubMedPubMedCentralCrossRefGoogle Scholar
  26. DiFrancesco D, Ferroni A, Mazzanti M, Tromba C (1986) Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. J Physiol 377:61–88PubMedPubMedCentralCrossRefGoogle Scholar
  27. Eyre MD, Renzi M, Farrant M, Nusser Z (2012) Setting the time course of inhibitory synaptic currents by mixing multiple GABA(A) receptor α subunit isoforms. J Neurosci 32(17):5853–5867PubMedPubMedCentralCrossRefGoogle Scholar
  28. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6(3):215–229PubMedCrossRefGoogle Scholar
  29. Fitzpatrick DC, Batra R, Stanford TR, Kuwada S (1997) A neuronal population code for sound localization. Nature 388(6645):871–874PubMedCrossRefGoogle Scholar
  30. Franken TP, Roberts MT, Wei L, Golding NL, Joris PX (2015) In vivo coincidence detection in mammalian sound localization generates phase delays. Nat Neurosci 18(3):444–452PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fujita I, Konishi M (1991) The role of GABAergic inhibition in processing of interaural time difference in the owl’s auditory system. J Neurosci 11(3):722–739PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fukui I, Sato T, Ohmori H (2006) Improvement of phase information at low sound frequency in nucleus magnocellularis of the chicken. J Neurophysiol 6(2):633–641CrossRefGoogle Scholar
  33. Fukui I, Ohmori H (2003) Developmental changes in membrane excitability and morphology of neurons in the nucleus angularis of the chicken. J Physiol 548(Pt 1):219–232PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fukui I, Ohmori H (2004) Tonotopic gradients of membrane and synaptic properties for neurons of the chicken nucleus magnocellularis. J Neurosci 24(34):7514–7523PubMedPubMedCentralCrossRefGoogle Scholar
  35. Funabiki K, Koyano K, Ohmori H (1998) The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. J Physiol 508(Pt 3):851–869PubMedPubMedCentralCrossRefGoogle Scholar
  36. Tang ZQ, Gao H, Lu Y (2009a) Control of a depolarizing GABAergic input in an auditory coincidence detection circuit. J Neurophysiol 102(3):1672–1683PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gardner SM, Trussell LO, Oertel D (2001) Correlation of AMPA receptor subunit composition with synaptic input in the mammalian cochlear nuclei. J Neurosci 21(18):7428–7437PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649PubMedCrossRefPubMedCentralGoogle Scholar
  39. Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32(4):613–636PubMedCrossRefGoogle Scholar
  40. Goldstein PA, Elsen FP, Ying SW, Ferguson C, Homanics GE, Harrison NL (2002) Prolongation of hippocampal miniature inhibitory postsynaptic currents in mice lacking GABAA receptor 1 subunit. J Neurophysiol 88:3208–3217PubMedCrossRefPubMedCentralGoogle Scholar
  41. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45(6):1227–1234PubMedPubMedCentralGoogle Scholar
  42. Grothe B, Sanes DH (1994) Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study. J Neurosci 14(3 Pt 2):1701–1709PubMedPubMedCentralCrossRefGoogle Scholar
  43. Grothe B (2003) New roles for synaptic inhibition in sound localization. Nat Rev Neurosci 4(7):540–550PubMedCrossRefPubMedCentralGoogle Scholar
  44. Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465(7301):1070–1074PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hackett JT, Jackson H, Rubel EW (1982) Synaptic excitation of the second and third order auditory neurons in the avian brain stem. Neuroscience 7:1455–1469PubMedCrossRefPubMedCentralGoogle Scholar
  46. Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430(7000):682–686PubMedCrossRefPubMedCentralGoogle Scholar
  47. Harvey AL (2001) Twenty years of dendrotoxins. Toxicon 39(1):15–26PubMedCrossRefPubMedCentralGoogle Scholar
  48. van der Heijden M, Lorteije JA, Plauška A, Roberts MT, Golding NL, Borst JG (2013) Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron 78(5):936–948PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hopkins WF, Allen ML, Houamed KM, Tempel BL (1994) Properties of voltage-gated K currents expressed in Xenopus oocytes by mKv1.1, mKv1.2 and their heteromultimers as revealed by mutagenesis of the dendrotoxin-binding site in mKv1.1. Pflügers Arch 428:382–390Google Scholar
  50. Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25(29):6857–6868PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hyson RL, Overholt EM, Lippe WR (1994) Cochlear microphonic measurements of interaural time differences in the chick. Hear Res 81(1–2):109–118PubMedCrossRefPubMedCentralGoogle Scholar
  52. Ishii TM, Takano M, Xie LH, Noma A, Ohmori H (1999) Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J Biol Chem 274(18):12835–12839PubMedCrossRefPubMedCentralGoogle Scholar
  53. Iwasaki S, Takahashi T (2001) Developmental regulation of transmitter release at the calyx of held in rat auditory brainstem. J Physiol 534(Pt 3):861–871PubMedPubMedCentralCrossRefGoogle Scholar
  54. Iwasaki S, Takahashi T (1998) Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J Physiol 509(Pt 2):419–423PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jhaveri S, Morest DK (1982) Sequential alterations of neuronal architecture in nucleus magnocellularis of the developing chicken: a Golgi study. Neuroscience 7(4):837–853PubMedCrossRefPubMedCentralGoogle Scholar
  57. Joris PX, Carney LH, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71:1022–1036PubMedCrossRefPubMedCentralGoogle Scholar
  58. Joris P, Yin TC (2007) A matter of time: internal delays in binaural processing. Trends Neurosci 30(2):70–78PubMedCrossRefPubMedCentralGoogle Scholar
  59. Joseph AW, Hyson RL (1993) Coincidence detection by binaural neurons in the chick brain stem. J Neurophysiol 69(4):1197–1211PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kew JN, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 79(1):4–29CrossRefGoogle Scholar
  61. Khaliq ZM, Raman IM (2006) Relative contributions of axonal and somatic Na channels to action potential initiation in cerebellar Purkinje neurons. J Neurosci 26(7):1935–1944PubMedPubMedCentralCrossRefGoogle Scholar
  62. Klump GM (2000) Sound localization in birds. In: Dooling RJ, Fay RR, Popper AN (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 249–307CrossRefGoogle Scholar
  63. Knudsen EI, Blasdel GG, Konishi M (1979) Sound localization by the barn owl (Tyto alba) measured with the search coil technique. J Comp Physiol 133:1–11CrossRefGoogle Scholar
  64. Köppl C, Carr CE (2008) Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biol Cybern 98(6):541–559PubMedPubMedCentralCrossRefGoogle Scholar
  65. Köppl C, Carr CE (1997) Low-frequency pathway in the barn owl’s auditory brainstem. J Comp Neurol 378(2):265–282PubMedCrossRefPubMedCentralGoogle Scholar
  66. Köppl C (1994) Auditory nerve terminals in the cochlear nucleus magnocellularis: differences between low and high frequencies. J Comp Neurol 339(3):438–446PubMedCrossRefPubMedCentralGoogle Scholar
  67. Köppl C (1997) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17(9):3312–3321PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11(2):178–186PubMedCrossRefPubMedCentralGoogle Scholar
  69. Kole MH, Stuart GJ (2008) Is action potential threshold lowest in the axon? Nat Neurosci 11(11):1253–1255PubMedCrossRefPubMedCentralGoogle Scholar
  70. Koyano K, Funabiki K, Ohmori H (1996) Voltage-gated ionic currents and their roles in timing coding in auditory neurons of the nucleus magnocellularis of the chick. Neurosci Res 26(1):29–45PubMedCrossRefGoogle Scholar
  71. Kuba H, Koyano K, Ohmori H (2002a) Development of membrane conductance improves coincidence detection in the nucleus laminaris of the chicken. J Physiol 540(Pt 2):529–542PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kuba H, Koyano K, Ohmori H (2002b) Synaptic depression improves coincidence detection in the nucleus laminaris in brainstem slices of the chick embryo. Eur J Neurosci 15(6):984–990PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kuba H, Yamada R, Ohmori H (2003) Evaluation of the limiting acuity of coincidence detection in nucleus laminaris of the chicken. J Physiol 552(Pt 2):611–620PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kuba H, Ishii TM, Ohmori H (2006) Axonal site of spike initiation enhances auditory coincidence detection. Nature 444(7122):1069–1072PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kuba H, Yamada R, Fukui I, Ohmori H (2005) Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. J Neurosci 25(8):1924–1934PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kuba H, Ohmori H (2009) Roles of axonal sodium channels in precise auditory time coding at nucleus magnocellularis of the chick. J Physiol 587(1):87–100PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kuba H, Oichi Y, Ohmori H (2010) Presynaptic activity regulates Na(+) channel distribution at the axon initial segment. Nature 465(7301):1075–1078PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kuba H, Adachi R, Ohmori H (2014) Activity-dependent and activity-independent development of the axon initial segment. J Neurosci 34(9):3443–3453PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lachica EA, Rübsamen R, Zirpel L, Rubel EW (1995) Glutamatergic inhibition of voltage-operated calcium channels in the avian cochlear nucleus. J Neurosci 15(3):1724–1734PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lachica EA, Rübsamen R, Rubel EW (1994) GABAergic terminals in nucleus magnocellularis and laminaris originate from the superior olivary nucleus. J Comp Neurol 348(3):403–418PubMedCrossRefGoogle Scholar
  81. Larsen ON, Dooling RJ, Michelsen A (2006) The role of pressure difference reception in the directional hearing of budgerigars (Melopsittacus undulatus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1063–1072PubMedCrossRefGoogle Scholar
  82. Leão RM, Von Gersdorff H (2002) Noradrenaline increases high-frequency firing at the calyx of held synapse during development by inhibiting glutamate release. J Neurophysiol 87(5):2297–2306PubMedCrossRefGoogle Scholar
  83. Levin MD, Kubke MF, Schneider M, Wenthold R, Carr CE (1997) Localization of AMPA-selective glutamate receptors in the auditory brainstem of the barn owl. J Comp Neurol 378(2):239–253PubMedCrossRefGoogle Scholar
  84. Lippe W, Rubel EW (1985) Ontogeny of tonotopic organization of brain stem auditory nuclei in the chicken: implications for development of the place principle. J Comp Neurol 237(2):273–289PubMedCrossRefGoogle Scholar
  85. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M (1998) A family of hyperpolarization-activated mammalian cation channels. Nature 393:587–591PubMedCrossRefGoogle Scholar
  86. Ludwig A, Zong X, Stieber J, Hullin R, Hofmann F, Biel M (1999) Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J 18(9):2323–2329PubMedPubMedCentralCrossRefGoogle Scholar
  87. Maki K, Furukawa S (2005) Acoustical cues for sound localization by the Mongolian gerbil, Meriones unguiculatus. J Acoust Soc Am 118(2):872–886PubMedCrossRefGoogle Scholar
  88. Manley GA, Yates GK, Köppl C (1988) Auditory peripheral tuning: evidence for a simple resonance phenomenon in the lizard Tiliqua. Hear Res 33(2):181–189PubMedCrossRefGoogle Scholar
  89. Manley GA, Kaiser A, Brix J, Gleich O (1991) Activity patterns of primary auditory-nerve fibres in chickens: development of fundamental properties. Hear Res 57(1):1–15PubMedCrossRefGoogle Scholar
  90. McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401PubMedCrossRefGoogle Scholar
  91. McClellan AM, Twyman RE (1999) Receptor system response kinetics reveal functional subtypes of native murine and recombinant human GABAA receptors. J Physiol 515(Pt 3):711–727PubMedPubMedCentralCrossRefGoogle Scholar
  92. Midorikawa M, Okamoto Y, Sakaba T (2014) Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of held. J Physiol 592(16):3495–3510PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mody I, Pearce RA (2004) Diversity of inhibitory neurotransmission through GABA(A) receptors. Trends Neurosci 27(9):569–575PubMedCrossRefGoogle Scholar
  94. Mogdans J, Knudsen EI (1994) Representation of interaural level difference in the VLVp, the first site of binaural comparison in the barn owl’s auditory system. Hear Res 74(1–2):148–164PubMedCrossRefGoogle Scholar
  95. Moiseff A, Konishi M (1981) Neuronal and behavioral sensitivity to binaural time differences in the owl. J Neurosci 1(1):40–48PubMedPubMedCentralCrossRefGoogle Scholar
  96. Moons L, D’Hondt E, Pijcke K, Vandesande F (1995) Noradrenergic system in the chicken brain: immunocytochemical study with antibodies to noradrenaline and dopamine-beta-hydroxylase. J Comp Neurol 360(2):331–348PubMedCrossRefGoogle Scholar
  97. Mosbacher J, Schoepfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266(5187):1059–1062PubMedCrossRefGoogle Scholar
  98. Nishino E, Yamada R, Kuba H, Hioki H, Furuta T, Kaneko T, Ohmori H (2008) Sound-intensity-dependent compensation for the small interaural time difference cue for sound source localization. J Neurosci 28(28):7153–7164PubMedPubMedCentralCrossRefGoogle Scholar
  99. Okuda H, Yamada R, Kuba H, Ohmori H (2013) Activation of metabotropic glutamate receptors improves the accuracy of coincidence detection by presynaptic mechanisms in the nucleus laminaris of the chick. J Physiol 591(1):365–378PubMedCrossRefGoogle Scholar
  100. Olsen JF, Knudsen EI, Esterly SD (1989) Neural maps of interaural time and intensity differences in the optic tectum of the barn owl. J Neurosci 9(7):2591–2605PubMedPubMedCentralCrossRefGoogle Scholar
  101. Otis TS, Trussell LO (1996) Inhibition of transmitter release shortens the duration of the excitatory synaptic current at a calyceal synapse. J Neurophysiol 76(5):3584–3588PubMedCrossRefGoogle Scholar
  102. Otis TS, Raman IM, Trussell LO (1995) AMPA receptors with high Ca2+ permeability mediate synaptic transmission in the avian auditory pathway. J Physiol 482(Pt 2):309–315PubMedPubMedCentralCrossRefGoogle Scholar
  103. Overholt EM, Rubel EW, Hyson RL (1992) A circuit for coding interaural time differences in the chick brainstem. J Neurosci 12(5):1698–1708PubMedPubMedCentralCrossRefGoogle Scholar
  104. Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26(6):1854–1863PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pape HC (1996) Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol 58:299–327PubMedCrossRefGoogle Scholar
  106. Parameshwaran S, Carr CE, Perney TM (2001) Expression of the Kv3.1 potassium channel in the avian auditory brainstem. J Neurosci 21(2):485–494PubMedPubMedCentralCrossRefGoogle Scholar
  107. Rubel EW, Parks TN (1975) Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of n. magnocellularis and n. laminaris. J Comp Neurol 164(4):411–433PubMedCrossRefGoogle Scholar
  108. Parks TN, Rubel EW (1978) Organization and development of the brain stem auditory nuclei of the chicken: primary afferent projections. J Comp Neurol 180(3):439–448PubMedCrossRefGoogle Scholar
  109. Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28(27):6914–6925PubMedPubMedCentralCrossRefGoogle Scholar
  110. Peña JL, Viete S, Albeck Y, Konishi M (1996) Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J Neurosci 16(21):7046–7054PubMedPubMedCentralCrossRefGoogle Scholar
  111. Raman IM, Zhang S, Trussell LO (1994) Pathway-specific variants of AMPA receptors and their contribution to neuronal signaling. J Neurosci 14(8):4998–5010PubMedPubMedCentralCrossRefGoogle Scholar
  112. Raman IM, Trussell LO (1992) The kinetics of the response to glutamate and kainate in neurons of the avian cochlear nucleus. Neuron 9(1):173–186PubMedCrossRefGoogle Scholar
  113. Rasband MN (2010) Composition, assembly, and maintenance of excitable membrane domains in myelinated axons. Semin Cell Dev Biol 22(2):178–184PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rathouz M, Trussell L (1998) Characterization of outward currents in neurons of the avian nucleus magnocellularis. J Neurophysiol 80(6):2824–2835PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ravindranathan A, Donevan SD, Sugden SG, Greig A, Rao MS, Parks TN (2000) Contrasting molecular composition and channel properties of AMPA receptors on chick auditory and brainstem motor neurons. J Physiol 523(Pt 3):667–684PubMedPubMedCentralCrossRefGoogle Scholar
  116. Reyes AD, Rubel EW, Spain WJ (1994) Membrane properties underlying the firing of neurons in the avian cochlear nucleus. J Neurosci 14(9):5352–5364PubMedPubMedCentralCrossRefGoogle Scholar
  117. Roberts MT, Seeman SC, Golding NL (2013) A mechanistic understanding of the role of feedforward inhibition in the mammalian sound localization circuitry. Neuron 78(5):923–935PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ryals BM, Rubel EW (1982) Patterns of hair cell loss in chick basilar papilla after intense auditory stimulation. Frequency organization. Acta Otolaryngol 93(1–6):205–210PubMedCrossRefGoogle Scholar
  119. Salvi RJ, Saunders SS, Powers NL, Boettcher FA (1999) Discharge patterns of cochlear ganglion neurons in the chicken. J Comp Physiol A 170:227–241Google Scholar
  120. Santoro B, Tibbs GR (1999) The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann N Y Acad Sci 868:741–764PubMedCrossRefGoogle Scholar
  121. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, Tibbs GR (1998) Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 93:717–729PubMedCrossRefGoogle Scholar
  122. Sato T, Fukui I, Ohmori H (2010) Interaural phase difference modulates the neural activity in the nucleus angularis and improves the processing of level difference cue in the lateral lemniscal nucleus in the chicken. Neurosci Res 66(2):198–212PubMedCrossRefGoogle Scholar
  123. Saunders JC, Ventetuolo CE, Plontke SK, Weiss BA (2002) Coding of sound intensity in the chick cochlear nerve. J Neurophysiol 88(6):2887–2898PubMedCrossRefGoogle Scholar
  124. Schroeder CI, Lewis RJ, Adams DJ (2013) Block of VoltageGated Calcium Channels by Peptide Toxins. in Madame Curie Bioscience database – NCBI Bookshelf: Landes BioscienceGoogle Scholar
  125. Seidl AH, Rubel EW, Harris DM (2010) Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J Neurosci 30(1):70–80PubMedPubMedCentralCrossRefGoogle Scholar
  126. Seidl AH, Rubel EW, Barría A (2014) Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J Neurosci 34(14):4914–4919PubMedPubMedCentralCrossRefGoogle Scholar
  127. Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB (1999) Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci U S A 96(16):9391–9396PubMedPubMedCentralCrossRefGoogle Scholar
  128. Shibata S, Kakazu Y, Okabe A, Fukuda A, Nabekura J (2004) Experience-dependent changes in intracellular Cl− regulation in developing auditory neurons. Neurosci Res 48:211–220PubMedCrossRefGoogle Scholar
  129. Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304(3):387–407PubMedCrossRefGoogle Scholar
  130. Smith PH, Joris PX, Yin TC (1998) Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J Neurophysiol 79(6):3127–3142PubMedCrossRefGoogle Scholar
  131. Smith DJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186(2):213–239PubMedCrossRefPubMedCentralGoogle Scholar
  132. Spitzer MW, Semple MN (1995) Neurons sensitive to interaural phase disparity in gerbil superior olive: diverse monaural and temporal response properties. J Neurophysiol 73(4):1668–1690PubMedCrossRefPubMedCentralGoogle Scholar
  133. Stuart G, Spruston N, Sakmann B, Häusser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20(3):125–131PubMedCrossRefPubMedCentralGoogle Scholar
  134. Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4(7):1787–1799PubMedPubMedCentralCrossRefGoogle Scholar
  135. Takahashi TT, Konishi M (1988) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274(2):212–238PubMedCrossRefPubMedCentralGoogle Scholar
  136. Takahashi T, Forsythe ID, Tsujimoto T, Barnes-Davies M, Onodera K (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274(5287):594–597PubMedCrossRefPubMedCentralGoogle Scholar
  137. Takahashi T, Kajikawa Y, Tsujimoto T (1998) G-Protein-coupled modulation of presynaptic calcium currents and transmitter release by a GABAB receptor. J Neurosci 18(9):3138–3146PubMedPubMedCentralCrossRefGoogle Scholar
  138. Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4(7):1781–1786PubMedPubMedCentralCrossRefGoogle Scholar
  139. Tang ZQ, Gao H, Lu Y (2009b) Control of a depolarizing GABAergic input in an auditory coincidence detection circuit. J Neurophysiol 102(3):1672–1683PubMedPubMedCentralCrossRefGoogle Scholar
  140. Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 96(3):807–821PubMedCrossRefPubMedCentralGoogle Scholar
  141. Tollin DJ, Yin TC (2005) Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive. J Neurosci 25(46):10648–10657PubMedPubMedCentralCrossRefGoogle Scholar
  142. Trussell LO (1997) Cellular mechanisms for preservation of timing in central auditory pathways. Curr Opin Neurobiol 7(4):487–492PubMedCrossRefPubMedCentralGoogle Scholar
  143. Trussell LO (1999) Synaptic mechanisms for coding timing in auditory neurons. Annu Rev Physiol 61:477–496PubMedCrossRefPubMedCentralGoogle Scholar
  144. Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE (2001) GABA(A) receptor alpha1 subunit deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. J Neurosci 21(9):3009–3016PubMedPubMedCentralCrossRefGoogle Scholar
  145. von Bartheld CS, Code RA, Rubel EW (1989) GABAergic neurons in brainstem auditory nuclei of the chick: distribution, morphology, and connectivity. J Comp Neurol 287(4):470–483CrossRefGoogle Scholar
  146. von Gersdorff H, Borst JG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3(1):53–64CrossRefGoogle Scholar
  147. Wang LY, Gan L, Forsythe ID, Kaczmarek LK (1998) Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509(Pt 1):183–194PubMedPubMedCentralCrossRefGoogle Scholar
  148. Wang HL, Zhang Z, Hintze M, Chen L (2011) Decrease in calcium concentration triggers neuronal retinoic acid synthesis during homeostatic synaptic plasticity. J Neurosci 31(49):17764–17771PubMedPubMedCentralCrossRefGoogle Scholar
  149. Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol A 166(5):721–734PubMedCrossRefPubMedCentralGoogle Scholar
  150. Watanabe M, Fukuda A (2015) Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci 9:371PubMedPubMedCentralCrossRefGoogle Scholar
  151. Xu-Friedman MA, Regehr WG (2005) Dynamic-clamp analysis of the effects of convergence on spike timing. I. Many synaptic inputs. J Neurophysiol 94(4):2512–2525PubMedCrossRefPubMedCentralGoogle Scholar
  152. Yamada R, Kuba H, Ishii TM, Ohmori H (2005) Hyperpolarization-activated cyclic nucleotide-gated cation channels regulate auditory coincidence detection in nucleus laminaris of the chick. J Neurosci 25(39):8867–8877PubMedPubMedCentralCrossRefGoogle Scholar
  153. Yamada R, Okuda H, Kuba H, Nishino E, Ishii TM, Ohmori H (2013) The cooperation of sustained and phasic inhibitions increases the contrast of ITD-tuning in low-frequency neurons of the chick nucleus laminaris. J Neurosci 33(9):3927–3938PubMedPubMedCentralCrossRefGoogle Scholar
  154. Yang L, Monsivais P, Rubel EW (1999) The superior olivary nucleus and its influence on nucleus laminaris: a source of inhibitory feedback for coincidence detection in the avian auditory brainstem. J Neurosci 19:2313–2325PubMedPubMedCentralCrossRefGoogle Scholar
  155. Yin TC, Chan JC (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol 64(2):465–488PubMedCrossRefPubMedCentralGoogle Scholar
  156. Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3(7):1373–1378PubMedPubMedCentralCrossRefGoogle Scholar
  157. Zhang S, Trussell LO (1994) A characterization of excitatory postsynaptic potentials in the avian nucleus magnocellularis. J Neurophysiol 72(2):705–718PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Harunori Ohmori
    • 1
  1. 1.Faculty of MedicineEmeritus Professor of Kyoto UniversityKyotoJapan

Personalised recommendations