Advertisement

Immune-Kynurenine Pathways and the Gut Microbiota-Brain Axis in Anxiety Disorders

  • Alper Evrensel
  • Barış Önen Ünsalver
  • Mehmet Emin Ceylan
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1191)

Abstract

Anxiety disorders are a complex set of illnesses in which genetic factors, particularly stress, play a role in the etiopathogenesis. In recent years, inflammation and intestinal microbiota have also been included in this complex network of relationships. The functions associated with tryptophan catabolism and serotonin biosynthesis have long been associated with anxiety disorders. Tryptophan catabolism progresses toward the path of the kynurenine in the presence of stress and inflammation. The catabolism of kynurenine is a pathway in which many enzymes play a role and a large number of catabolites with neuroactive properties occur. The body’s serotonin biosynthesis is primarily performed by enterochromaffin cells located in the intestines. A change in the intestinal microbiota composition (dysbiosis) directly affects the serotonin biosynthesis. Stress, unhealthy nutrition, and the use of antibiotics cause dysbiosis. In the light of this new perspective, the role of dysbiosis-induced inflammation and kynurenine pathway catabolites activated sequentially come into prominence in the etiopathogenesis of anxiety disorders.

Keywords

Tryptophan Serotonin Kynurenine Immune system Anxiety Microbiota Gut-brain axis 

Notes

Acknowledgments

We would like to thank Dr. Barış Önen Ünsalver for preparing the image used in this review.

References

  1. 1.
    Evrensel A, Önen Ünsalver B, Ceylan ME. Therapeutic potential of the microbiome in the treatment of neuropsychiatric disorders. Med Sci. 2019;7(2):21.Google Scholar
  2. 2.
    Evrensel A, Önen Ünsalver B, Ceylan ME. Gut-brain axis and psychiatric disorders. Curr Psych Rev. 2018;14(3):178–86.CrossRefGoogle Scholar
  3. 3.
    Evrensel A, Ceylan ME. Gut-microbiota-brain axis and depression. In: Kim YK, editor. Understanding depression. Singapore: Springer; 2018. p. 197–207.CrossRefGoogle Scholar
  4. 4.
    Evrensel A, Ceylan ME. The gut-brain axis: the missing link in depression. Clin Psychopharmacol Neurosci. 2015;13(3):239–44.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI, Juge N, et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb Ecol Health Dis. 2015;26:26050.PubMedGoogle Scholar
  6. 6.
    Evrensel A, Ceylan ME. Fecal microbiota transplantation in the treatment-resistant psychiatric disorders. In: Kim YK, editor. Treatment resistance in psychiatry. Singapore: Springer; 2019. p. 369–76.CrossRefGoogle Scholar
  7. 7.
    Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.PubMedCrossRefGoogle Scholar
  8. 8.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220–30.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: implications for brain disorders. Trends Mol Med. 2014;20(9):509–18.PubMedCrossRefGoogle Scholar
  10. 10.
    Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112(Pt B):399–412.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Consortium HMP. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.CrossRefGoogle Scholar
  12. 12.
    Adlerberth I, Wold AE. Establishment of the gut microbiota in Western infants. Acta Paediatr. 2009;98(2):229–38.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5(7):e177.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4586–91.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560–4.CrossRefGoogle Scholar
  16. 16.
    Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352(6285):565–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol. 2012;9(5):286–94.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hoebel BG. Neuroscience and appetitive behavior research: 25 years. Appetite. 1997;29(2):119–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Mayer EA, Aziz Q, Coen S, Kern M, Labus JS, Lane R, et al. Brain imaging approaches to the study of functional GI disorders a Rome working team report. Neurogastroenterol Motil. 2009;21(6):579–96.PubMedCrossRefGoogle Scholar
  20. 20.
    Schellekens H, Finger BC, Dinan TG, Cryan JF. Ghrelin signalling and obesity: at the interface of stress, mood and food reward. Pharmacol Ther. 2012;135(3):316–26.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Mayer E, Knight R, Mazmanian SK, Cryan JF, Tillisch K. Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci. 2014;34(46):15490–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 2015;17(5):565–76.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Evrensel A, Ceylan ME. Fecal microbiota transplantation and its usage in neuropsychiatric disorders. Clin Psychopharmacol Neurosci. 2016;14(3):231–7.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Diaz Heijtz R, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108(7):3047–52.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–64.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry. 2013;18(6):666–73.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil. 2014;26(11):1615–27.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Arentsen T, Raith H, Qian Y, Forssberg H, Heijtz RD. Host microbiota modulates development of social preference in mice. Microb Ecol Health Dis. 2015;26:29719.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: an assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164–74.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Messaoudi M, Lalonde R, Violle N, Javelot H, Desor D, Nejdi A, et al. Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr. 2011;105(5):755–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Desbonnet L, Clarke G, Traplin A, O’Sullivan O, Crispie F, Moloney RD, et al. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour. Brain Behav Immun. 2015;48:165–73.PubMedCrossRefGoogle Scholar
  33. 33.
    Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21(6):797–805.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599–609.PubMedCrossRefGoogle Scholar
  35. 35.
    Benton D, Williams C, Brown A. Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr. 2007;61(3):355–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun. 2015;48:258–64.PubMedCrossRefGoogle Scholar
  37. 37.
    Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, et al. Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil. 2014;26(8):1155–62.PubMedCrossRefGoogle Scholar
  38. 38.
    Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.PubMedCrossRefGoogle Scholar
  39. 39.
    Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21(6):786–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Kim YK, Jeon SW. Neuroinflammation and the immune-kynurenine pathway in anxiety disorders. Curr Neuropharmacol. 2018;16(5):574–82.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Martinez JA, Bolivar F, Escalante A. Shikimic acid production in Escherichia coli: from classical metabolic engineering strategies to omics applied to improve its production. Front Bioeng Biotechnol. 2015;3:145.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Priya VK, Sarkar S, Sinha S. Evolution of tryptophan biosynthetic pathway in microbial genomes: a comparative genetic study. Syst Synth Biol. 2014;8(1):59–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Badawy AA. Tryptophan availability for kynurenine pathway metabolism across the life span: control mechanisms and focus on aging, exercise, diet and nutritional supplements. Neuropharmacology. 2017;112(Pt B):248–63.PubMedCrossRefGoogle Scholar
  44. 44.
    Palego L, Betti L, Rossi A, Giannaccini G. Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans. J Amino Acids. 2016;2016:8952520.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mayer EA, Naliboff BD, Chang L. Basic pathophysiologic mechanisms in irritable bowel syndrome. Dig Dis. 2001;19(3):212–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Camilleri M. Serotonergic modulation of visceral sensation: lower gut. Gut. 2002;51(Suppl 1):81–6.CrossRefGoogle Scholar
  47. 47.
    Gershon MD, Tack J. The serotonin signaling system: from basic understanding to drug development for functional GI disorders. Gastroenterology. 2007;132(1):397–414.PubMedCrossRefGoogle Scholar
  48. 48.
    Bearcroft CP, Andre EA, Farthing MJ. In vivo effects of the 5-HT3 antagonist alosetron on basal and cholera toxin-induced secretion in the human jejunum: a segmental perfusion study. Aliment Pharmacol Ther. 1997;11(6):1109–14.PubMedCrossRefGoogle Scholar
  49. 49.
    Chial HJ, Camilleri M, Burton D, Thomforde G, Olden KW, Stephens D. Selective effects of serotonergic psychoactive agents on gastrointestinal functions in health. Am J Physiol Gastrointest Liver Physiol. 2003;284(1):G130–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Donovan MH, Tecott LH. Serotonin and the regulation of mammalian energy balance. Front Neurosci. 2013;7:36.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Klatt S, Bock W, Rentschler J, Beckh K, Adler G. Effects of tropisetron, a 5-HT3 receptor antagonist, on proximal gastric motor and sensory function in nonulcer dyspepsia. Digestion. 1999;60(2):147–52.PubMedCrossRefGoogle Scholar
  52. 52.
    O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32–48.PubMedCrossRefGoogle Scholar
  53. 53.
    Clarke G, McKernan DP, Gaszner G, Quigley EM, Cryan JF, Dinan TG. A distinct profile of tryptophan metabolism along the kynurenine pathway downstream of toll-like receptor activation in irritable bowel syndrome. Front Pharmacol. 2012;3:90.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Fatokun AA, Hunt NH, Ball HJ. Indoleamine 2,3-dioxygenase 2 (IDO2) and the kynurenine pathway: characteristics and potential roles in health and disease. Amino Acids. 2013;45(6):1319–29.PubMedCrossRefGoogle Scholar
  55. 55.
    Forrest CM, Youd P, Kennedy A, Gould SR, Darlington LG, Stone TW. Purine, kynurenine, neopterin and lipid peroxidation levels in inflammatory bowel disease. J Biomed Sci. 2002;9(5):436–42.PubMedCrossRefGoogle Scholar
  56. 56.
    Stone TW, Darlington LG. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol. 2013;169(6):1211–27.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kaszaki J, Erces D, Varga G, Szabo A, Vecsei L, Boros M. Kynurenines and intestinal neurotransmission: the role of N-methyl-D-aspartate receptors. J Neural Transm. 2012;119(2):211–23.PubMedCrossRefGoogle Scholar
  58. 58.
    O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, et al. Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry. 2009;65(3):263–7.PubMedCrossRefGoogle Scholar
  59. 59.
    Jasarevic E, Howerton CL, Howard CD, Bale TL. Alterations in the vaginal microbiome by maternal stress are associated with metabolic reprogramming of the offspring gut and brain. Endocrinology. 2015;156(9):3265–76.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Reber SO, Siebler PH, Donner NC, Morton JT, Smith DG, Kopelman JM, et al. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc Natl Acad Sci U S A. 2016;113(22):E3130–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–75.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH. Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut. 2007;56(11):1522–8.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Schmidt K, Cowen PJ, Harmer CJ, Tzortzis G, Errington S, Burnet PW. Prebiotic intake reduces the waking cortisol response and alters emotional bias in healthy volunteers. Psychopharmacology (Berl). 2015;232(10):1793–801.CrossRefGoogle Scholar
  64. 64.
    El Aidy S, Dinan TG, Cryan JF. Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Ther. 2015;37(5):954–67.PubMedCrossRefGoogle Scholar
  65. 65.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.PubMedCrossRefGoogle Scholar
  66. 66.
    Campbell BM, Charych E, Lee AW, Moller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci. 2014;8:12.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Irritable bowel syndrome: a microbiome-gut-brain axis disorder? World J Gastroenterol. 2014;20(39):14105–25.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Clarke G, Fitzgerald P, Cryan JF, Cassidy EM, Quigley EM, Dinan TG. Tryptophan degradation in irritable bowel syndrome: evidence of indoleamine 2,3-dioxygenase activation in a male cohort. BMC Gastroenterol. 2009;9:6.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tilg H, Moschen AR. Food, immunity, and the microbiome. Gastroenterology. 2015;148(6):1107–19.PubMedCrossRefGoogle Scholar
  70. 70.
    Notarangelo FM, Wilson EH, Horning KJ, Thomas MA, Harris TH, Fang Q, et al. Evaluation of kynurenine pathway metabolism in Toxoplasma gondii-infected mice: implications for schizophrenia. Schizophr Res. 2014;152(1):261–7.PubMedCrossRefGoogle Scholar
  71. 71.
    El Aidy S, Kunze W, Bienenstock J, Kleerebezem M. The microbiota and the gut-brain axis: insights from the temporal and spatial mucosal alterations during colonisation of the germfree mouse intestine. Benef Microbes. 2012;3(4):251–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Mardinoglu A, Shoaie S, Bergentall M, Ghaffari P, Zhang C, Larsson E. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol Syst Biol. 2015;11(10):834.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–703.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Reigstad CS, Salmonson CE, Rainey JF 3rd, Szurszewski JH, Linden DR, Sonnenburg JL, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395–403.PubMedCrossRefGoogle Scholar
  75. 75.
    Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264–76.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    El Aidy S, van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G, Levenez F, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5(5):567–79.PubMedCrossRefGoogle Scholar
  77. 77.
    Freewan M, Rees MD, Plaza TS, Glaros E, Lim YJ, Wang XS, et al. Human indoleamine 2,3- dioxygenase is a catalyst of physiological heme peroxidase reactions: implications for the inhibition of dioxygenase activity by hydrogen peroxide. J Biol Chem. 2013;288(3):1548–67.PubMedCrossRefGoogle Scholar
  78. 78.
    Valladares R, Bojilova L, Potts AH, Cameron E, Gardner C, Lorca G, et al. Lactobacillus johnsonii inhibits indoleamine 2,3- dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J. 2013;27(4):1711–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med. 2006;8(20):1–27.PubMedCrossRefGoogle Scholar
  81. 81.
    Schwarcz R, Bruno JP, Muchowski PJ, Wu HQ. Kynurenines in the mammalian brain: when physiology meets pathology. Nat Rev Neurosci. 2012;13(7):465–77.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Silber BY, Schmitt JA. Effects of tryptophan loading on human cognition, mood, and sleep. Neurosci Biobehav Rev. 2010;34:387–407.PubMedCrossRefGoogle Scholar
  83. 83.
    Schwarcz R, Pellicciari R. Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther. 2002;303(1):1–10.PubMedCrossRefGoogle Scholar
  84. 84.
    Erny D, Hrabe de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965–77.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586–97.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Berstad A, Raa J, Valeur J. Indole – the scent of a healthy ‘inner soil’. Microb Ecol Health Dis. 2015;26:27997.PubMedGoogle Scholar
  87. 87.
    Scherzer R, Gdalevsky GY, Goldgur Y, Cohen-Luria R, Bittner S, Parola AH. New tryptophanase inhibitors: towards prevention of bacterial biofilm formation. J Enzyme Inhib Med Chem. 2009;24(2):350–5.PubMedCrossRefGoogle Scholar
  88. 88.
    Lee JH, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34(4):426–44.PubMedCrossRefGoogle Scholar
  89. 89.
    Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015;23(11):707–18.PubMedCrossRefGoogle Scholar
  90. 90.
    Bansal T, Alaniz RC, Wood TK, Jayaraman A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A. 2010;107:228–33.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG. Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol. 2014;28(8):1221–38.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Munoz-Bellido JL, Munoz-Criado S, Garcia-Rodriguez JA. Antimicrobial activity of psychotropic drugs: selective serotonin reuptake inhibitors. Int J Antimicrob Agents. 2000;14(3):177–80.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Macedo D, Filho AJ, Soares de Sousa CN, Quevedo J, Barichello T, Júnior HV. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J Affect Disord. 2017;208:22–32.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kurnasov O, Goral V, Colabroy K, Gerdes S, Anantha S, Osterman A, et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chem Biol. 2003;10(12):1195–204.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Kurnasov O, Jablonski L, Polanuyer B, Dorrestein P, Begley T, Osterman A. Aerobic tryptophan degradation pathway in bacteria: novel kynurenine formamidase. FEMS Microbiol Lett. 2003;227(2):219–27.PubMedCrossRefGoogle Scholar
  96. 96.
    Begley TP, Kinsland C, Mehl RA, Osterman A, Dorrestein P. The biosynthesis of nicotinamide adenine dinucleotides in bacteria. Vitam Horm. 2001;61:103–19.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Kuc D, Zgrajka W, Parada-Turska J, Urbanik-Sypniewska T, Turski WA. Micromolar concentration of kynurenic acid in rat small intestine. Amino Acids. 2008;35(2):503–5.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron. 2002;34(1):13–25.PubMedCrossRefGoogle Scholar
  99. 99.
    McKernan D, Fitzgerald P, Dinan T, Cryan J. The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil. 2010;22:1029–68.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    O’Mahony S, Felice V, Nally K, Savignac H, Claesson M, Scully P, et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience. 2014;277:885–901.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Muller CP, Homberg JR. Serotonin revisited. Behav Brain Res. 2015;277:1–2.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Moloney RD, Johnson AC, O’Mahony SM, Dinan TG, Greenwood-Van Meerveld B, Cryan JF. Stress and the microbiota-gut-brain axis in visceral pain: relevance to irritable bowel syndrome. CNS Neurosci Ther. 2016;22(2):102–17.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Orlikov A, Ryzov I. Caffeine-induced anxiety and increase of kynurenine concentration in plasma of healthy subjects: a pilot study. Biol Psychiatry. 1991;29(4):391–6.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Orlikov AB, Prakhye IB, Ryzov IV. Kynurenine in blood plasma and DST in patients with endogenous anxiety and endogenous depression. Biol Psychiatry. 1994;36(2):97–102.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Clarke G, O’Mahony SM, Dinan TG, Cryan JF. Priming for health: gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr. 2014;103(8):812–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Khalil OS, Pisar M, Forrest CM, Vincenten MC, Darlington LG, Stone TW. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Eur J Neurosci. 2014;39(10):1558–71.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Pisar M, Forrest CM, Khalil OS, McNair K, Vincenten MC, Qasem S, et al. Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway. Brain Res. 2014;1576:1–17.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Alexander KS, Pocivavsek A, Wu HQ, Pershing ML, Schwarcz R, Bruno JP. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: reversal with galantamine. Neuroscience. 2013;238:19–28.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pershing ML, Bortz DM, Pocivavsek A, Fredericks PJ, Jorgensen CV, Vunck SA, et al. Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: implications for schizophrenia. Neuropharmacology. 2015;90:33–41.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Pocivavsek A, Wu HQ, Elmer GI, Bruno JP, Schwarcz R. Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur J Neurosci. 2012;35(10):1605–12.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Clarke G, Quigley EMM, Cryan JF, Dinan TG. Irritable bowel syndrome: towards biomarker identification. Trends Mol Med. 2009;15(10):478–89.PubMedCrossRefGoogle Scholar
  112. 112.
    Keszthelyi D, Troost FJ, Jonkers DM, Kruimel JW, Leue C, Masclee AA. Decreased levels of kynurenic acid in the intestinal mucosa of IBS patients: relation to serotonin and psychological state. J Psychosom Res. 2013;74(6):501–4.PubMedCrossRefGoogle Scholar
  113. 113.
    Clarke G, O’Mahony SM, Hennessy AA, Ross P, Stanton C, Cryan JF. Chain reactions: early-life stress alters the metabolic profile of plasma polyunsaturated fatty acids in adulthood. Behav Brain Res. 2009;205(1):319–21.PubMedCrossRefGoogle Scholar
  114. 114.
    Fitzgerald P, Cassidy Eugene M, Clarke G, Scully P, Barry S, Quigley Eamonn MM, et al. Tryptophan catabolism in females with irritable bowel syndrome: relationship to interferon-gamma, severity of symptoms and psychiatric co-morbidity. Neurogastroenterol Motil. 2008;20(12):1291–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Kennedy PJ, Allen AP, O’Neill A, Quigley EM, Cryan JF, Dinan TG, et al. Acute tryptophan depletion reduces kynurenine levels: implications for treatment of impaired visuospatial memory performance in irritable bowel syndrome. Psychopharmacology (Berl). 2015;232(8):1357–71.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Alper Evrensel
    • 1
  • Barış Önen Ünsalver
    • 2
  • Mehmet Emin Ceylan
    • 3
  1. 1.Department of PsychiatryUskudar UniversityIstanbulTurkey
  2. 2.Vocational School of Health Services, Department of Medical Documentation and SecretariatUskudar UniversityIstanbulTurkey
  3. 3.Departments of Psychology and PhilosophyUskudar UniversityIstanbulTurkey

Personalised recommendations