Myelin pp 43-51 | Cite as

Activity-Dependent Myelination

  • Daisuke Kato
  • Hiroaki WakeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1190)


Oligodendrocyte form myelin around the axons to regulate the conduction velocity. Myelinated axons are composed of white matter to act as cables to connect distinct brain regions. Recent human MRI studies showed that the signal from white matter change in the people with special skills such as taxi driver, piano player, and juggling. The change of the white matter suggested that (1) The plasticity of myelination depends on neuronal activity (activity-dependent myelination) and (2) White matter plasticity is essential for brain functions. In this session, we discussed that how the un-electrical components, oligodendrocytes, and its precursor cells receive the signal from electrically active neurons and differentiate, proliferate, and myelinate the axons to modulate the activity of neuronal circuits, ultimately affect on their behaviors. In this review, we highlight the physiological functions of oligodendrocyte and their neuronal activity-dependent functions and thus show new insight for their contribution to brain functions.


Glial cells Oligodendrocytes Oligodendrocyte progenitor cells Myelination 



Axonal initial segment


Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor


Adenosine triphosphate


Central nervous system


Dorsal root ganglion


Functional magnetic resonance imaging


Gamma-aminobutyric acid receptor


Green fluorescent protein


Myelin basic protein


Metabotropic glutamate receptor


N-methyl-d-aspartate receptor




Oligodendrocyte progenitor cells


Alpha receptor for platelet-derived growth factor





This work was supported by the Japan Science and Technology Agency for Core Research for Evolutional Science and Technology (to H.W.), the Japan Science and Technology Agency for Precursory Research for Embryonic Science and Technology (to H.W.), Grant-in-Aids for Scientific Research on Scientific Research on Innovative Areas 15H01300 (to H.W.) and 25110732 (to H.W.), and Grant-in-Aids for Young Scientists (A) 26710004 (to H.W.) from the Ministry of Education, Culture, Sports, Science and Technology.


  1. Barres BA, Raff MC (1993) Proliferation of oligodendrocyte precursor cells depends on electrical activity in axons. Nature 361:258–260PubMedCrossRefGoogle Scholar
  2. Bennett IJ, Madden DJ (2014) Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience 276:187–205PubMedCrossRefGoogle Scholar
  3. Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191PubMedCrossRefGoogle Scholar
  4. Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, Zalc B, Lubetzki C (1996) Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci U S A 93:9887–9892PubMedPubMedCentralCrossRefGoogle Scholar
  5. Dubois-Dalcq M, Behar T, Hudson L, Lazzarini RA (1986) Emergence of three myelin proteins in oligodendrocytes cultured without neurons. J Cell Biol 102:384–392PubMedCrossRefGoogle Scholar
  6. Fields RD (2011) Imaging learning: the search for a memory trace. Neuroscientist 17:185–196PubMedPubMedCentralCrossRefGoogle Scholar
  7. Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767PubMedPubMedCentralCrossRefGoogle Scholar
  8. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436PubMedPubMedCentralCrossRefGoogle Scholar
  9. Gallo V, Mangin JM, Kukley M, Dietrich D (2008) Synapses on NG2-expressing progenitors in the brain: multiple functions? J Physiol 586:3767–3781PubMedPubMedCentralCrossRefGoogle Scholar
  10. Garcia-Marin V, Garcia-Lopez P, Freire M (2007) Cajal’s contributions to glia research. Trends Neurosci 30:479–487PubMedCrossRefPubMedCentralGoogle Scholar
  11. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304PubMedPubMedCentralCrossRefGoogle Scholar
  12. Grubb MS, Burrone J (2010) Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465:1070–1074PubMedPubMedCentralCrossRefGoogle Scholar
  13. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98:4746–4751PubMedPubMedCentralCrossRefGoogle Scholar
  14. Hill RA, Nishiyama A (2014) NG2 cells (polydendrocytes): listeners to the neural network with diverse properties. Glia 62:1195–1210PubMedPubMedCentralCrossRefGoogle Scholar
  15. Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18:683–689PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16:668–676PubMedPubMedCentralCrossRefGoogle Scholar
  17. Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21:696–706PubMedPubMedCentralCrossRefGoogle Scholar
  18. Ishibashi T, Dakin KA, Stevens B, Lee PR, Kozlov SV, Stewart CL, Fields RD (2006) Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–832PubMedPubMedCentralCrossRefGoogle Scholar
  19. Kang SH, Fukaya M, Yang JK, Rothstein JD, Bergles DE (2010) NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68:668–681PubMedPubMedCentralCrossRefGoogle Scholar
  20. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179PubMedCrossRefGoogle Scholar
  21. Kim JY, Sun Q, Oglesbee M, Yoon SO (2003) The role of ErbB2 signaling in the onset of terminal differentiation of oligodendrocytes in vivo. J Neurosci 23:5561–5571PubMedPubMedCentralCrossRefGoogle Scholar
  22. Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10:311–320PubMedCrossRefGoogle Scholar
  23. Lee S, Leach MK, Redmond SA, Chong SY, Mellon SH, Tuck SJ, Feng ZQ, Corey JM, Chan JR (2012) A culture system to study oligodendrocyte myelination processes using engineered nanofibers. Nat Methods 9:917–922PubMedPubMedCentralCrossRefGoogle Scholar
  24. Li Q, Brus-Ramer M, Martin JH, McDonald JW (2010) Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci Lett 479:128–133PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lin SC, Huck JH, Roberts JD, Macklin WB, Somogyi P, Bergles DE (2005) Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46:773–785PubMedCrossRefGoogle Scholar
  26. Liu J, Dietz K, DeLoyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, Dupree J, Casaccia P (2012) Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 15:1621–1623PubMedPubMedCentralCrossRefGoogle Scholar
  27. Lundgaard I, Luzhynskaya A, Stockley JH, Wang Z, Evans KA, Swire M, Volbracht K, Gautier HO, Franklin RJ, Attwell D, Karadottir RT (2013) Neuregulin and BDNF induce a switch to NMDA receptor-dependent myelination by oligodendrocytes. PLoS Biol 11:e1001743PubMedPubMedCentralCrossRefGoogle Scholar
  28. Makinodan M, Rosen KM, Ito S, Corfas G (2012) A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337:1357–1360PubMedPubMedCentralCrossRefGoogle Scholar
  29. Mangin JM, Li P, Scafidi J, Gallo V (2012) Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat Neurosci 15:1192–1194PubMedPubMedCentralCrossRefGoogle Scholar
  30. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346:318–322PubMedPubMedCentralCrossRefGoogle Scholar
  31. Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26:7907–7918PubMedPubMedCentralCrossRefGoogle Scholar
  32. Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, El Manira A, Lyons DA (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18:628–630PubMedPubMedCentralCrossRefGoogle Scholar
  33. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, Role L, Lai C, Schwab MH, Nave KA (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–703PubMedCrossRefPubMedCentralGoogle Scholar
  34. Nave KA (2010) Myelination and support of axonal integrity by glia. Nature 468:244–252PubMedCrossRefGoogle Scholar
  35. Nave KA, Ehrenreich H (2014) Myelination and oligodendrocyte functions in psychiatric diseases. JAMA Psychiat 71:582–584CrossRefGoogle Scholar
  36. Nave KA, Salzer JL (2006) Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16:492–500PubMedCrossRefGoogle Scholar
  37. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533PubMedCrossRefPubMedCentralGoogle Scholar
  38. Nishiyama A, Komitova M, Suzuki R, Zhu X (2009) Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 10:9–22PubMedCrossRefGoogle Scholar
  39. Pereira JA, Lebrun-Julien F, Suter U (2012) Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci 35:123–134PubMedCrossRefPubMedCentralGoogle Scholar
  40. Piaton G, Gould RM, Lubetzki C (2010) Axon-oligodendrocyte interactions during developmental myelination, demyelination and repair. J Neurochem 114:1243–1260PubMedGoogle Scholar
  41. Purger D, Gibson EM, Monje M (2016) Myelin plasticity in the central nervous system. Neuropharmacology 110:563–573PubMedCrossRefGoogle Scholar
  42. Rosenberg SS, Kelland EE, Tokar E, De la Torre AR, Chan JR (2008) The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proc Natl Acad Sci U S A 105:14662–14667PubMedPubMedCentralCrossRefGoogle Scholar
  43. Sampaio-Baptista C, Khrapitchev AA, Foxley S, Schlagheck T, Scholz J, Jbabdi S, DeLuca GC, Miller KL, Taylor A, Thomas N, Kleim J, Sibson NR, Bannerman D, Johansen-Berg H (2013) Motor skill learning induces changes in white matter microstructure and myelination. J Neurosci 33:19499–19503PubMedPubMedCentralCrossRefGoogle Scholar
  44. Scholz J, Klein MC, Behrens TE, Johansen-Berg H (2009) Training induces changes in white-matter architecture. Nat Neurosci 12:1370–1371PubMedPubMedCentralCrossRefGoogle Scholar
  45. Simon C, Gotz M, Dimou L (2011) Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59:869–881PubMedCrossRefGoogle Scholar
  46. Stevens B, Porta S, Haak LL, Gallo V, Fields RD (2002) Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 36:855–868PubMedPubMedCentralCrossRefGoogle Scholar
  47. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, Xu X, Esper RM, Loeb JA, Shrager P, Chao MV, Falls DL, Role L, Salzer JL (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47:681–694PubMedPubMedCentralCrossRefGoogle Scholar
  48. Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL, Einheber S, Salzer JL (2008) Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56:284–293PubMedCrossRefGoogle Scholar
  49. Taveggia C, Feltri ML, Wrabetz L (2010) Signals to promote myelin formation and repair. Nat Rev Neurol 6:276–287PubMedPubMedCentralCrossRefGoogle Scholar
  50. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651PubMedPubMedCentralCrossRefGoogle Scholar
  51. Wurtz CC, Ellisman MH (1986) Alterations in the ultrastructure of peripheral nodes of Ranvier associated with repetitive action potential propagation. J Neurosci 6:3133–3143PubMedPubMedCentralCrossRefGoogle Scholar
  52. Xiao L, Ohayon D, McKenzie IA, Sinclair-Wilson A, Wright JL, Fudge AD, Emery B, Li H, Richardson WD (2016) Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nat Neurosci 19:1210–1217PubMedPubMedCentralCrossRefGoogle Scholar
  53. Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885PubMedPubMedCentralCrossRefGoogle Scholar
  54. Zhu X, Bergles DE, Nishiyama A (2008) NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development 135:145–157PubMedCrossRefGoogle Scholar
  55. Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10:321–330PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of System NeuroscienceKobe University Graduate School of MedicineKobeJapan
  2. 2.Core Research for Evolutional Science and Technology, Japan Science and Technology AgencySaitamaJapan

Personalised recommendations