Advertisement

Myelin pp 33-42 | Cite as

Cytoskeletal Signal-Regulated Oligodendrocyte Myelination and Remyelination

  • Shingo MiyataEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1190)

Abstract

Myelination and remyelination in the central nervous system (CNS) are essential for rapid conduction of action potentials and for appropriate neuronal communications supporting higher brain functions. Myelination is dependent on developmental stage and is controlled by neuronal axons–oligodendrocyte (OL) signaling. Numerous studies of the initial myelination and remyelination stages in the CNS have demonstrated several key cytoskeletal signals in axons and OLs. In this review, we focus on cytoskeletal signal-regulated OL myelination and remyelination, with particular attention to neuronal Notch proteins, bidirectional Eph/ephrin signaling, OL integrin and cadherin superfamily proteins, OL actin rearrangement, and OL tyrosine kinase Fyn substrate proteins during the initial myelination and remyelination stages in the CNS.

Keywords

CNS OPC Oligodendrocyte (OL) Myelination Remyelination Cytoskeletal signal PSA-NCAM EAE MS Eph Ephrin CSPG Integrin Cadherin Actin N-WASP Arp2/3 WAVE Fyn FAK Sgk1 Ndrg1 LINC ECM 

Abbreviations

Arp2/3

Actin-related protein 2/3

CDC42

Cell division control protein 42 homolog

CNS

Central nervous system

CSPG

Chondroitin sulfate proteoglycan

DCC

Deleted in colorectal cancer

Dsc

Desmocollin

Dsg

Desmoglein

EAE

Experimental autoimmune encephalomyelitis

ECM

Extracellular matrix

FAK

Focal adhesion kinase

GTPase

Guanosine triphosphatase

ILK

Integrin-linked kinase

IPP

ILK-PINCH-parvin

LINC

Linker of nucleoskeleton and cytoskeleton

LINGO-1

Leucine-rich repeat and immunoglobulin-like domain-containing protein 1

MS

Multiple sclerosis

Ndrg1

N-myc downstream-regulated gene 1

N-WASP

Neural Wiskott-Aldrich syndrome protein

OL

Oligodendrocyte

OPC

Oligodendroglial progenitor cell

PINCH

Particularly interesting new cysteine-histidine-rich protein

PSA-NCAM

Polysialylated neural cell adhesion molecule

PTK

Protein tyrosine kinase

Rac1

RAS-related C3 botulinus toxin substrate 1

RhoA

Ras homolog gene family, member A

RhoGAP

Rho GTPase-activating proteins

Sgk1

Serum glucocorticoid-regulated kinase

ST8SIA2

ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2

SYNE1

Synaptic nuclear envelope protein 1

WAVE

WASP family verprolin homologous protein 1

Notes

Acknowledgments

This work was supported in part by the Japan Society for the Promotion of Science, a Grant-in-Aid for Scientific Research on Innovative Areas (KAKENHI; grant 26117519), a Grant-in-Aid for Scientific Research (C) (KAKENHI; grant 25430079, 15 K06790, 16 K07073), a Grant-in-Aid for Young Scientists (B) (KAKENHI; grant 20700335), a Health Labor Sciences Research Grant (200937033B, 201450003A), the Sakamoto Research Institute of Psychopathology, the Osaka Medical Research Foundation for Intractable Diseases and the Global COE Program from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We thank Drs. M. Tohyama, K. Ikenaka, J. Yamauchi, K. Sango, H. Baba, S. Shiosaka, S. Shimada, O. Hori, S. Yoshida, A. Wanaka, T. Katayama, Y. Shigeyoshi, S. Shimizu, Y. Ishino, T. Ishikawa, T. Ishibashi, H. Takebayashi, T. Sakisaka, H. Wake, T. Furuyashiki, and N. Ohno for their valuable comments. We thank Ms. A.Yamamoto, A. Kawakami, E. Hisamatsu, E. Kashima, M. Kaneita, Y. Yamamoto, H. Yamanaka, A. Uede, K. Yoshikawa, E. Moriya, and Y. Ohashi for their technical assistance.

References

  1. Akhtar N, Streuli CH (2013) An integrin-ILK-microtubule network orients cell polarity and lumen formation in glandular epithelium. Nat Cell Biol 15:17–27PubMedPubMedCentralCrossRefGoogle Scholar
  2. Almeida RG, Lyons DA (2017) On myelinated axon plasticity and neuronal circuit formation and function. J Neurosci 37:10023–10034PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arvanitis DN, Behar A, Tryoen-Toth P, Bush JO, Jungas T, Vitale N, Davy A (2013) Ephrin B1 maintains apical adhesion of neural progenitors. Development 140:2082–2092PubMedCrossRefGoogle Scholar
  4. Bacon C, Lakics V, Machesky L, Rumsby M (2007) N-WASP regulates extension of filopodia and processes by oligodendrocyte progenitors, oligodendrocytes, and Schwann cells – implications for axon ensheathment at myelination. Glia 55:844–858PubMedCrossRefGoogle Scholar
  5. Baer AS, Syed YA, Kang SU, Mitteregger D, Vig R, Ffrench-Constant C, Franklin RJ, Altmann F, Lubec G, Kotter MR (2009) Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain 132:465–481PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bartzokis G, Lu PH, Heydari P, Couvrette A, Lee GJ, Kalashyan G, Freeman F, Grinstead JW, Villablanca P, Finn JP, Mintz J, Alger JR, Altshuler LL (2012) Multimodal magnetic resonance imaging assessment of white matter aging trajectories over the lifespan of healthy individuals. Biol Psychiatry 72:1026–1034PubMedCrossRefGoogle Scholar
  7. Bauer NG, Richter-Landsberg C, Ffrench-Constant C (2009) Role of the oligodendroglial cytoskeleton in differentiation and myelination. Glia 57:1691–1705PubMedCrossRefGoogle Scholar
  8. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94:235–263PubMedCrossRefGoogle Scholar
  9. Bourgin C, Murai KK, Richter M, Pasquale EB (2007) The EphA4 receptor regulates dendritic spine remodeling by affecting beta1-integrin signaling pathways. J Cell Biol 178:1295–1307PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bove RM, Green AJ (2017) Remyelinating pharmacotherapies in multiple sclerosis. Neurotherapeutics 14:894–904PubMedPubMedCentralCrossRefGoogle Scholar
  11. Câmara J, Wang Z, Nunes-Fonseca C, Friedman HC, Grove M, Sherman DL, ffrench-Constant C (2009) Integrin-mediated axoglial interactions initiate myelination in the central nervous system. J Cell Biol 185:699–712PubMedPubMedCentralCrossRefGoogle Scholar
  12. Charles P, Hernandez MP, Stankoff B, Aigrot MS, Colin C, Rougon G, Zalc B, Lubetzki C (2000) Negative regulation of central nervous system myelination by polysialylated-neural cell adhesion molecule. Proc Natl Acad Sci U S A 97:7585–7590PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chun SJ, Rasband MN, Sidman RL, Habib AA, Vartanian T (2003) Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J Cell Biol 163:397–408PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cohen RI (2005) Exploring oligodendrocyte guidance: to boldly go where no cell has gone before. Cell Mol Life Sci 62:505–510PubMedCrossRefGoogle Scholar
  15. Colognato H, Baron W, Avellana-Adalid V, Relvas JB, Evercooren ABV, Georges-Labouesse E, Ffrench-Constant C (2002) CNS integrins switch growth factor signalling to promote target-dependent survival. Nat Cell Biol 4:833–841PubMedCrossRefGoogle Scholar
  16. Colognato H, Galvin J, Wang Z, Relucio J, Nguyen T, Harrison D, Yurchenco PD, Ffrench-Constant C (2007) Identification of dystroglycan as a second laminin receptor in oligodendrocytes, with a role in myelination. Development 134:1723–1736PubMedCrossRefGoogle Scholar
  17. Dammer EB, Duong DM, Diner I, Gearing M, Feng Y, Lah JJ, Levey AI, Seyfried NT (2013) Neuron enriched nuclear proteome isolated from human brain. J Proteome Res 12:3193–3206PubMedPubMedCentralCrossRefGoogle Scholar
  18. Decker L, Avellana-Adalid V, Nait-Oumesmar B, Durbec P, Baron-Van Evercooren A (2000) Oligodendrocyte precursor migration and differentiation: combined effects of PSA residues, growth factors, and substrates. Mol Cell Neurosci16:422–439PubMedCrossRefGoogle Scholar
  19. Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71CrossRefGoogle Scholar
  20. Eyermann C, Czaplinski K, Colognato H (2012) Dystroglycan promotes filopodial formation and process branching in differentiating oligodendroglia. J Neurochem 120:928–947PubMedGoogle Scholar
  21. Fewou SN, Ramakrishnan H, Büssow H, Gieselmann V, Eckhardt M (2007) Down-regulation of polysialic acid is required for efficient myelin formation. J Biol Chem 282:16700–16711PubMedCrossRefGoogle Scholar
  22. Forbes TA, Gallo V (2017) All wrapped up: environmental effects on myelination. Trends Neurosci 40:572–587PubMedPubMedCentralCrossRefGoogle Scholar
  23. Forrest AD, Beggs HE, Reichardt LF, Dupree JL, Colello RJ, Fuss B (2009) Focal adhesion kinase (FAK): a regulator of CNS myelination. J Neurosci Res 87:3456–3464PubMedPubMedCentralCrossRefGoogle Scholar
  24. Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin – from mechanisms to experimental medicines. Nat Rev Neurosci 18:753–769PubMedCrossRefGoogle Scholar
  25. Ghatak S, Morgner J, Wickström SA (2013) ILK: a pseudokinase with a unique function in the integrin-actin linkage. Biochem Soc Trans 41:995–1001PubMedCrossRefGoogle Scholar
  26. Havrylenko S, Noguera P, Abou-Ghali M, Manzi J, Faqir F, Lamora A, Guérin C, Blanchoin L, Plastino J (2015) WAVE binds Ena/VASP for enhanced Arp2/3 complex-based actin assembly. Mol Biol Cell 26:55–65PubMedPubMedCentralCrossRefGoogle Scholar
  27. Herbert AL, Monk KR (2017) Advances in myelinating glial cell development. Curr Opin Neurobiol 42:53–60PubMedCrossRefGoogle Scholar
  28. Hernandez M, Patzig J, Mayoral SR, Costa KD, Chan JR, Casaccia P (2016) Mechanostimulation promotes nuclear and epigenetic changes in oligodendrocytes. J Neurosci 36:806–813PubMedPubMedCentralCrossRefGoogle Scholar
  29. Hoshina N, Tezuka T, Yokoyama K, Kozuka-Hata H, Oyama M, Yamamoto T (2007) Focal adhesion kinase regulates laminin-induced oligodendroglial process outgrowth. Genes Cells 12:1245–1254PubMedCrossRefGoogle Scholar
  30. Hu QD, Ang BT, Karsak M, Hu WP, Cui XY, Duka T, Takeda Y, Chia W, Sankar N, Ng YK, Ling EA, Maciag T, Small D, Trifonova R, Kopan R, Okano H, Nakafuku M, Chiba S, Hirai H, Aster JC, Schachner M, Pallen CJ, Watanabe K, Xiao ZC (2003) F3/contactin acts as a functional ligand for notch during oligodendrocyte maturation. Cell 115:163–175PubMedCrossRefGoogle Scholar
  31. Hu J, Deng L, Wang X, Xu XM (2009) Effects of extracellular matrix molecules on the growth properties of oligodendrocyte progenitor cells in vitro. J Neurosci Res 87:2854–2862PubMedCrossRefGoogle Scholar
  32. Hussain R, Macklin WB (2017) Integrin-linked kinase (ILK) deletion disrupts oligodendrocyte development by altering cell cycle. J Neurosci 37:397–412PubMedPubMedCentralCrossRefGoogle Scholar
  33. Huynh-Do U, Stein E, Lane AA, Liu H, Cerretti DP, Daniel TO (1999) Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. EMBO J 18:2165–2173PubMedPubMedCentralCrossRefGoogle Scholar
  34. Huynh-Do U, Vindis C, Liu H, Cerretti DP, McGrew JT, Enriquez M, Daniel TO (2002) Ephrin-B1 transduces signals to activate integrin-mediated migration, attachment and angiogenesis. J Cell Sci 115:3073–3081PubMedGoogle Scholar
  35. Jakovcevski I, Mo Z, Zecevic N (2007) Down-regulation of the axonal polysialic acid-neural cell adhesion molecule expression coincides with the onset of myelination in the human fetal forebrain. Neuroscience 149:328–337PubMedPubMedCentralCrossRefGoogle Scholar
  36. Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N (2009) Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 3:5PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kim HJ, DiBernardo AB, Sloane JA, Rasband MN, Solomon D, Kosaras B, Kwak SP, Vartanian TK (2006) WAVE1 is required for oligodendrocyte morphogenesis and normal CNS myelination. J Neurosci 26:5849–5859PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kim H, Shin J, Kim S, Poling J, Park HC, Appel B (2008) Notch-regulated oligodendrocyte specification from radial glia in the spinal cord of zebrafish embryos. Dev Dyn 237:2081–2089PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kippert A, Trajkovic K, Rajendran L, Ries J, Simons M (2007) Rho regulates membrane transport in the endocytic pathway to control plasma membrane specialization in oligodendroglial cells. J Neurosci 27:3560–3570PubMedPubMedCentralCrossRefGoogle Scholar
  40. Krämer-Albers EM, White R (2011) From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 68:2003–2012PubMedCrossRefGoogle Scholar
  41. Lafrenaye AD, Fuss B (2010) Focal adhesion kinase can play unique and opposing roles in regulating the morphology of differentiating oligodendrocytes. J Neurochem 115:269–282PubMedPubMedCentralCrossRefGoogle Scholar
  42. Laursen LS, Chan CW, ffrench-Constant C (2009) An integrin-contactin complex regulates CNS myelination by differential Fyn phosphorylation. J Neurosci 29:9174–9185PubMedPubMedCentralCrossRefGoogle Scholar
  43. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C (2008) Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 40:1044–1055PubMedCrossRefGoogle Scholar
  44. Liang X, Draghi NA, Resh MD (2004) Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. J Neurosci 24:7140–7149PubMedPubMedCentralCrossRefGoogle Scholar
  45. Linneberg C, Harboe M, Laursen LS (2015) Axo-Glia interaction preceding CNS myelination is regulated by bidirectional Eph-Ephrin signaling. ASN Neuro 7. pii: 1759091415602859CrossRefGoogle Scholar
  46. Mi S, Lee X, Shao Z, Thill G, Ji B, Relton J, Levesque M, Allaire N, Perrin S, Sands B, Crowell T, Cate RL, McCoy JM, Pepinsky RB (2004) LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex. Nat Neurosci 7:221–228PubMedCrossRefGoogle Scholar
  47. Mi S, Miller RH, Lee X, Scott ML, Shulag-Morskaya S, Shao Z, Chang J, Thill G, Levesque M, Zhang M, Hession C, Sah D, Trapp BD, He Z, Jung V, McCoy JM, Pepinsky RB (2005) LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci 8:745–751PubMedCrossRefGoogle Scholar
  48. Mi S, Pepinsky RB, Cadavid D (2013) Blocking LINGO-1 as a therapy to promote CNS repair: from concept to the clinic. CNS Drugs 27:493–503PubMedCrossRefGoogle Scholar
  49. Miao H, Burnett E, Kinch M, Simon E, Wang B (2000) Activation of EphA2 kinase suppresses integrin function and causes focal-adhesion-kinase dephosphorylation. Nat Cell Biol 2:62–69PubMedCrossRefGoogle Scholar
  50. Michalski JP, Cummings SE, O’Meara RW, Kothary R (2016) Integrin-linked kinase regulates oligodendrocyte cytoskeleton, growth cone, and adhesion dynamics. J Neurochem 136:536–549PubMedCrossRefGoogle Scholar
  51. Mitew S, Hay CM, Peckham H, Xiao J, Koenning M, Emery B (2014) Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 276:29–47PubMedCrossRefGoogle Scholar
  52. Mitra SK, Schlaepfer DD (2006) Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr Opin Cell Biol 18:516–523PubMedCrossRefGoogle Scholar
  53. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6:56–68PubMedCrossRefGoogle Scholar
  54. Miyamoto Y, Yamauchi J, Tanoue A (2008) Cdk5 phosphorylation of WAVE2 regulates oligodendrocyte precursor cell migration through nonreceptor tyrosine kinase Fyn. J Neurosci 28:8326–8337PubMedPubMedCentralCrossRefGoogle Scholar
  55. Miyata S, Koyama Y, Takemoto K, Yoshikawa K, Ishikawa T, Taniguchi M, Inoue K, Aoki M, Hori O, Katayama T, Tohyama M (2011) Plasma corticosterone activates SGK1 and induces morphological changes in oligodendrocytes in corpus callosum. PLoS One 6:e19859PubMedPubMedCentralCrossRefGoogle Scholar
  56. Miyata S, Yoshikawa K, Taniguchi M, Ishikawa T, Tanaka T, Shimizu S, Tohyama M (2015a) Sgk1 regulates desmoglein 1 expression levels in oligodendrocytes in the mouse corpus callosum after chronic stress exposure. Biochem Biophys Res Commun 464:76–82PubMedCrossRefGoogle Scholar
  57. Miyata S, Hattori T, Shimizu S, Ito A, Tohyama M (2015b) Disturbance of oligodendrocyte function plays a key role in the pathogenesis of schizophrenia and major depressive disorder. Biomed Res Int 2015:492367PubMedPubMedCentralGoogle Scholar
  58. Miyata S, Taniguchi M, Koyama Y, Shimizu S, Tanaka T, Yasuno F, Yamamoto A, Iida H, Kudo T, Katayama T, Tohyama M (2016) Association between chronic stress-induced structural abnormalities in Ranvier nodes and reduced oligodendrocyte activity in major depression. Sci Rep 6:23084PubMedPubMedCentralCrossRefGoogle Scholar
  59. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533PubMedPubMedCentralCrossRefGoogle Scholar
  60. O’Meara RW, Michalski JP, Anderson C, Bhanot K, Rippstein P, Kothary R (2013) Integrin-linked kinase regulates process extension in oligodendrocytes via control of actin cytoskeletal dynamics. J Neurosci 33:9781–9793PubMedPubMedCentralCrossRefGoogle Scholar
  61. O’Meara RW, Cummings SE, Michalski JP, Kothary R (2016) A new in vitro mouse oligodendrocyte precursor cell migration assay reveals a role for integrin-linked kinase in cell motility. BMC Neurosci 17:7PubMedPubMedCentralCrossRefGoogle Scholar
  62. Parsons JT (2003) Focal adhesion kinase: the first ten years. J Cell Sci 116:1409–1416PubMedCrossRefGoogle Scholar
  63. Peckham H, Giuffrida L, Wood R, Gonsalvez D, Ferner A, Kilpatrick TJ, Murray SS, Xiao J (2016) Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia 64:255–269PubMedCrossRefGoogle Scholar
  64. Prestoz L, Chatzopoulou E, Lemkine G, Spassky N, Lebras B, Kagawa T, Thomas JL (2004) Control of axonophilic migration of oligodendrocyte precursor cells by Eph-ephrin interaction. Neuron Glia Biol 1:73–83PubMedCrossRefGoogle Scholar
  65. Rajasekharan S, Baker KA, Horn KE, Jarjour AA, Antel JP, Kennedy TE (2009) Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA. Development 136:415–426PubMedCrossRefGoogle Scholar
  66. Samanta J, Salzer JL (2015) Myelination: actin disassembly leads the way. Dev Cell 34:129–130PubMedPubMedCentralCrossRefGoogle Scholar
  67. Seifert T, Bauer J, Weissert R, Fazekas F, Storch MK (2007) Notch1 and its ligand Jagged1 are present in remyelination in a T-cell- and antibody-mediated model of inflammatory demyelination. Acta Neuropathol 113:195–203PubMedCrossRefGoogle Scholar
  68. Shao Z, Lee X, Huang G, Sheng G, Henderson CE, Louvard D, Sohn J, Pepinsky B, Mi S (2017) LINGO-1 Regulates oligodendrocyte differentiation through the cytoplasmic gelsolin signaling pathway. J Neurosci 37:3127–3137PubMedPubMedCentralCrossRefGoogle Scholar
  69. Sperber BR, Boyle-Walsh EA, Engleka MJ, Gadue P, Peterson AC, Stein PL, Scherer SS, McMorris FA (2001) A unique role for Fyn in CNS myelination. J Neurosci 21:2039–2047PubMedPubMedCentralCrossRefGoogle Scholar
  70. Stidworthy MF, Genoud S, Li WW, Leone DP, Mantei N, Suter U, Franklin RJ (2004) Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 127:1928–1941PubMedCrossRefGoogle Scholar
  71. Sun Y, Deng Y, Xiao M, Hu L, Li Z, Chen C (2017) Chondroitin sulfate proteoglycans inhibit the migration and differentiation of oligodendrocyte precursor cells and its counteractive interaction with laminin. Int J Mol Med 40:1657–1668PubMedPubMedCentralCrossRefGoogle Scholar
  72. Taniguchi S, Liu H, Nakazawa T, Yokoyama K, Tezuka T, Yamamoto T (2003) P250GAP, a neural RhoGAP protein, is associated with and phosphorylated by Fyn. Biochem Biophys Res Commun 306:151–155PubMedCrossRefGoogle Scholar
  73. Tohyama M, Miyata S, Hattori T, Shimizu S, Matsuzaki S (2015) Molecular basis of major psychiatric diseases such as schizophrenia and depression. Anat Sci Int 90:137–143PubMedCrossRefGoogle Scholar
  74. Umemori H, Sato S, Yagi T, Aizawa S, Yamamoto T (1994) Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367:572–576PubMedCrossRefGoogle Scholar
  75. Umemori H, Kadowaki Y, Hirosawa K, Yoshida Y, Hironaka K, Okano H, Yamamoto T (1999) Stimulation of myelin basic protein gene transcription by Fyn tyrosine kinase for myelination. J Neurosci 19:1393–1397PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wake H, Lee PR, Fields RD (2011) Control of local protein synthesis and initial events in myelination by action potentials. Science 333:1647–1651PubMedPubMedCentralCrossRefGoogle Scholar
  77. Wang S, Sdrulla AD, diSibio G, Bush G, Nofziger D, Hicks C, Weinmaster G, Barres BA (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21:63–75PubMedCrossRefGoogle Scholar
  78. Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, Zhao C, Zhang L, Jiang M, He X, Ma Z, Lu F, Xin M, Zhou W, Yoon SO, Bongarzone ER, Lu QR (2017) miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev Cell 40:566–582PubMedPubMedCentralCrossRefGoogle Scholar
  79. Watkins TA, Emery B, Mulinyawe S, Barres BA (2008) Distinct stages of myelination regulated by gamma-secretase and astrocytes in a rapidly myelinating CNS coculture system. Neuron 60:555–569PubMedPubMedCentralCrossRefGoogle Scholar
  80. Werneburg S, Fuchs HLS, Albers I, Burkhardt H, Gudi V, Skripuletz T, Stangel M, Gerardy-Schahn R, Hildebrandt H (2017) Polysialylation at early stages of oligodendrocyte differentiation promotes myelin repair. J Neurosci 37:8131–8141PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wickström SA, Lange A, Hess MW, Polleux J, Spatz JP, Krüger M, Pfaller K, Lambacher A, Bloch W, Mann M, Huber LA, Fässler R (2010) Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Dev Cell 19:574–588PubMedPubMedCentralCrossRefGoogle Scholar
  82. Wolf RM, Wilkes JJ, Chao MV, Resh MD (2001) Tyrosine phosphorylation of p190 RhoGAP by Fyn regulates oligodendrocyte differentiation. J Neurobiol 49:62–78PubMedCrossRefGoogle Scholar
  83. Young KM, Psachoulia K, Tripathi RB, Dunn S-J, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Molecular Brain ScienceResearch Institute of Traditional Asian Medicine, Kindai UniversityOsaka-sayamaJapan

Personalised recommendations