Advertisement

Myelin pp 281-297 | Cite as

Brain Tumors of Glial Origin

  • Christopher A. Waker
  • Robert M. LoberEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1190)

Abstract

Gliomas are a heterogeneous group of tumors with evolving classification based on genotype. Isocitrate dehydrogenase (IDH) mutation is an early event in the formation of some diffuse gliomas, and is the best understood mechanism of their epigenetic dysregulation. Glioblastoma may evolve from lower-grade lesions with IDH mutations, or arise independently from copy number changes in platelet-derived growth factor receptor alpha (PDGFRA) and phosphatase and tensin homolog (PTEN). Several molecular subtypes of glioblastoma arise from a common proneural precursor with a tendency toward transition to a mesenchymal subtype. Following oncogenic transformation, gliomas escape growth arrest through a distinct step of aberrant telomere reverse transcriptase (TERT) expression, or mutations in either alpha thalassemia/mental retardation syndrome (ATRX) or death-domain associated protein (DAXX) genes. Metabolic reprogramming allows gliomas to thrive in harsh microenvironments such as hypoxia, acidity, and nutrient depletion, which contribute to tumor initiation, maintenance, and treatment resistance.

Keywords

Glioma Metabolism Cancer Stem cell Glycolysis Hypoxia Pediatric Tumor 

References

  1. Adam J, Yang M, Soga T, Pollard PJ (2014) Rare insights into cancer biology. Oncogene 33:2547–2556PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agnihotri S, Zadeh G (2016) Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro-Oncology 18:160–172PubMedCrossRefGoogle Scholar
  3. Ahmad F, Patrick S, Sheikh T, Sharma V, Pathak P, Malgulwar PB, Kumar A, Joshi SD, Sarkar C, Sen E (2017) Telomerase reverse transcriptase (Tert)—enhancer of Zeste homolog 2 (Ezh2) Network regulates lipid metabolism and DNA damage responses in glioblastoma. J Neurochem 143(6):671–683PubMedCrossRefGoogle Scholar
  4. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/Gaba-glutamine cycle: aspects of transport, neurotransmitter homeostasis and Ammonia transfer. J Neurochem 98:641–653PubMedCrossRefGoogle Scholar
  5. Bakhshinyan D, Adile AA, Qazi MA, Singh M, Kameda-Smith MM, Yelle N, Chokshi C, Venugopal C, Singh SK (2018) Introduction to cancer stem cells: past, present, and future. Methods Mol Biol 1692:1–16PubMedCrossRefGoogle Scholar
  6. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, Mclendon RE, Bigner DD, Rich JN (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848PubMedCrossRefGoogle Scholar
  7. Bar EE (2011) Glioblastoma, cancer stem cells and hypoxia. Brain Pathol 21:119–129PubMedCrossRefGoogle Scholar
  8. Baysan M, Woolard K, Cam MC, Zhang W, Song H, Kotliarova S, Balamatsias D, Linkous A, Ahn S, Walling J, Belova GI, Fine HA (2017) Detailed longitudinal sampling of glioma stem cells in situ reveals Chr7 gain and Chr10 loss as repeated events in primary tumor formation and recurrence. Int J Cancer 141:2002–2013PubMedCrossRefGoogle Scholar
  9. Belanger M, Magistretti PJ (2009) The role of astroglia in neuroprotection. Dialogues Clin Neurosci 11:281–295PubMedPubMedCentralGoogle Scholar
  10. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738PubMedCrossRefGoogle Scholar
  11. Belanich M, Randall T, Pastor MA, Kibitel JT, Alas LG, Dolan ME, Schold SC Jr, Gander M, Lejeune FJ, Li BF, White AB, Wasserman P, Citron ML, Yarosh DB (1996) Intracellular localization and intercellular heterogeneity of the human DNA repair protein O(6)-Methylguanine-DNA methyltransferase. Cancer Chemother Pharmacol 37:547–555PubMedCrossRefGoogle Scholar
  12. Bell RJ, Rube HT, Kreig A, Mancini A, Fouse SD, Nagarajan RP, Choi S, Hong C, He D, Pekmezci M, Wiencke JK, Wrensch MR, Chang SM, Walsh KM, Myong S, Song JS, Costello JF (2015) Cancer. The transcription factor Gabp selectively binds and activates the mutant tert promoter in cancer. Science 348:1036–1039PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bender S, Tang Y, Lindroth AM, Hovestadt V, Jones DT, Kool M, Zapatka M, Northcott PA, Sturm D, Wang W, Radlwimmer B, Hojfeldt JW, Truffaux N, Castel D, Schubert S, Ryzhova M, Seker-Cin H, Gronych J, Johann PD, Stark S, Meyer J, Milde T, Schuhmann M, Ebinger M, Monoranu CM, Ponnuswami A, Chen S, Jones C, Witt O, Collins VP, Von Deimling A, Jabado N, Puget S, Grill J, Helin K, Korshunov A, Lichter P, Monje M, Plass C, Cho YJ, Pfister SM (2013) Reduced H3k27me3 and DNA hypomethylation are major drivers of gene expression in K27m mutant pediatric high-grade gliomas. Cancer Cell 24:660–672PubMedCrossRefGoogle Scholar
  14. Bhat KPL, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, Conroy S, Long L, Lelic N, Wang S, Gumin J, Raj D, Kodama Y, Raghunathan A, Olar A, Joshi K, Pelloski CE, Heimberger A, Kim SH, Cahill DP, Rao G, Den Dunnen WFA, Boddeke H, Phillips HS, Nakano I, Lang FF, Colman H, Sulman EP, Aldape K (2013) Mesenchymal differentiation mediated by Nf-Kappab promotes radiation resistance in glioblastoma. Cancer Cell 24:331–346PubMedCrossRefGoogle Scholar
  15. Boumezbeur F, Mason GF, De Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF (2010a) Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab 30:211–221PubMedCrossRefGoogle Scholar
  16. Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010b) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13c nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13991PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24:1687–1694PubMedCrossRefGoogle Scholar
  18. Brennan CW, Verhaak RG, Mckenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O'neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L, Network TR (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cabrini G, Fabbri E, Lo Nigro C, Dechecchi MC, Gambari R (2015) Regulation of expression of O6-Methylguanine-DNA methyltransferase and the treatment of glioblastoma (review). Int J Oncol 47:417–428PubMedPubMedCentralCrossRefGoogle Scholar
  20. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedCrossRefGoogle Scholar
  21. Castelo-Branco P, Choufani S, Mack S, Gallagher D, Zhang C, Lipman T, Zhukova N, Walker EJ, Martin D, Merino D, Wasserman JD, Elizabeth C, Alon N, Zhang L, Hovestadt V, Kool M, Jones DTW, Zadeh G, Croul S, Hawkins C, Hitzler J, Wang JCY, Baruchel S, Dirks PB, Malkin D, Pfister S, Taylor MD, Weksberg R, Tabori U (2013) Methylation of the Tert promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol 14:534–542PubMedCrossRefGoogle Scholar
  22. Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B (2006) Hif-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570PubMedPubMedCentralCrossRefGoogle Scholar
  23. Deberardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104:19345–19350PubMedPubMedCentralCrossRefGoogle Scholar
  24. Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671PubMedCrossRefGoogle Scholar
  25. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, Baylin SB, Herman JG (2000) Inactivation of the DNA-repair gene Mgmt and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354PubMedCrossRefGoogle Scholar
  26. Ferris SP, Hofmann JW, Solomon DA, Perry A (2017) Characterization of gliomas: from morphology to molecules. Virchows Arch. 471(2):257–269PubMedCrossRefGoogle Scholar
  27. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, Weil RJ, Nakano I, Sarkaria JN, Stringer BW, Day BW, Li M, Lathia JD, Rich JN, Hjelmeland AB (2013) Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat Neurosci 16:1373–1382PubMedPubMedCentralCrossRefGoogle Scholar
  28. Fukumura D, Xu L, Chen Y, Gohongi T, Seed B, Jain RK (2001) Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Res 61:6020–6024PubMedGoogle Scholar
  29. Gallagher CN, Carpenter KL, Grice P, Howe DJ, Mason A, Timofeev I, Menon DK, Kirkpatrick PJ, Pickard JD, Sutherland GR, Hutchinson PJ (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13c-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132:2839–2849PubMedCrossRefPubMedCentralGoogle Scholar
  30. Goffart N, Kroonen J, Di Valentin E, Dedobbeleer M, Denne A, Martinive P, Rogister B (2015) Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through Cxcl12/Cxcr4 Signaling. Neuro-Oncology 17:81–94PubMedCrossRefPubMedCentralGoogle Scholar
  31. Goffart N, Lombard A, Lallemand F, Kroonen J, Nassen J, Di Valentin E, Berendsen S, Dedobbeleer M, Willems E, Robe P, Bours V, Martin D, Martinive P, Maquet P, Rogister B (2017) Cxcl12 mediates glioblastoma resistance to radiotherapy in the subventricular zone. Neuro-Oncology 19:66–77PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gotze S, Wolter M, Reifenberger G, Muller O, Sievers S (2010) Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas. Int J Cancer 126:2584–2593PubMedPubMedCentralGoogle Scholar
  33. Gusyatiner O, Hegi ME (2017) Glioma epigenetics: from subclassification to novel treatment options. Semin Cancer Biol. 51:50–58PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA (1999) Creation of human tumour cells with defined genetic elements. Nature 400:464–468PubMedCrossRefPubMedCentralGoogle Scholar
  35. Halliday J, Helmy K, Pattwell SS, Pitter KL, Laplant Q, Ozawa T, Holland EC (2014) In vivo radiation response of proneural glioma characterized by protective P53 transcriptional program and proneural-mesenchymal shift. Proc Natl Acad Sci U S A 111:5248–5253PubMedPubMedCentralCrossRefGoogle Scholar
  36. Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken JW, Wesseling P, Reifenberger G, Von Deimling A (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474PubMedCrossRefPubMedCentralGoogle Scholar
  37. Hegi ME, Diserens AC, Gorlia T, Hamou MF, De Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (2005) Mgmt gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefPubMedCentralGoogle Scholar
  38. Helmlinger G, Yuan F, Dellian M, Jain RK (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med 3:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  39. Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, Macswords J, Lathia JD, Mclendon R, Lindner D, Sloan A, Rich JN (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18:829–840PubMedCrossRefPubMedCentralGoogle Scholar
  40. Horiguchi K, Tomizawa Y, Tosaka M, Ishiuchi S, Kurihara H, Mori M, Saito N (2003) Epigenetic inactivation of Rassf1a candidate tumor suppressor gene at 3p21.3 in brain tumors. Oncogene 22:7862–7865PubMedCrossRefPubMedCentralGoogle Scholar
  41. Houdova Megova M, Drabek J, Dwight Z, Trojanec R, Koudelakova V, Vrbkova J, Kalita O, Mlcochova S, Rabcanova M, Hajduch M (2017) Isocitrate dehydrogenase mutations are better prognostic marker than O6-Methylguanine-DNA methyltransferase promoter methylation in glioblastomas - a retrospective, single-Centre molecular genetics study of gliomas. Klin Onkol 30:361–371PubMedCrossRefPubMedCentralGoogle Scholar
  42. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA (2013) Highly recurrent Tert promoter mutations in human melanoma. Science 339:957–959PubMedPubMedCentralCrossRefGoogle Scholar
  43. Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci U S A 100:4879–4884PubMedPubMedCentralCrossRefGoogle Scholar
  44. Jin X, Kim LJY, Wu Q, Wallace LC, Prager BC, Sanvoranart T, Gimple RC, Wang X, Mack SC, Miller TE, Huang P, Valentim CL, Zhou QG, Barnholtz-Sloan JS, Bao S, Sloan AE, Rich JN (2017) Targeting glioma stem cells through combined Bmi1 and Ezh2 inhibition. Nat Med 23:1352–1361PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jo SH, Lee SH, Chun HS, Lee SM, Koh HJ, Lee SE, Chun JS, Park JW, Huh TL (2002) Cellular defense against UVb-induced phototoxicity by cytosolic Nadp(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun 292:542–549PubMedCrossRefPubMedCentralGoogle Scholar
  46. Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, Mclean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones SJM, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193PubMedCrossRefPubMedCentralGoogle Scholar
  47. Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, Balasubramaniyan V, Wagemakers M, Den Dunnen WF, Kruyt FA (2015) Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the Hif1alpha-Zeb1 Axis. Cancer Lett 359:107–116PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kallinowski F, Vaupel P (1986) Concurrent measurements of O2 partial pressures and pH values in human mammary carcinoma. Xenotransplants. 200:609–621Google Scholar
  49. Kato Y, Ozawa S, Miyamoto C, Maehata Y, Suzuki A, Maeda T, Baba Y (2013) Acidic extracellular microenvironment and cancer. Cancer Cell Int 13:89PubMedPubMedCentralCrossRefGoogle Scholar
  50. Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA Jr, Friedman AH, Friedman H, Gallia GL, Giovanella BC, Grollman AP, He TC, He Y, Hruban RH, Jallo GI, Mandahl N, Meeker AK, Mertens F, Netto GJ, Rasheed BA, Riggins GJ, Rosenquist TA, Schiffman M, Shih Ie M, Theodorescu D, Torbenson MS, Velculescu VE, Wang TL, Wentzensen N, Wood LD, Zhang M, Mclendon RE, Bigner DD, Kinzler KW, Vogelstein B, Papadopoulos N, Yan H (2013) Tert promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 110:6021–6026PubMedPubMedCentralCrossRefGoogle Scholar
  51. Koelsche C, Sahm F, Capper D, Reuss D, Sturm D, Jones DT, Kool M, Northcott PA, Wiestler B, Bohmer K, Meyer J, Mawrin C, Hartmann C, Mittelbronn M, Platten M, Brokinkel B, Seiz M, Herold-Mende C, Unterberg A, Schittenhelm J, Weller M, Pfister S, Wick W, Korshunov A, Von Deimling A (2013) Distribution of Tert promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126:907–915PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kokovay E, Goderie S, Wang Y, Lotz S, Lin G, Sun Y, Roysam B, Shen Q, Temple S (2010) Adult Svz lineage cells home to and leave the vascular niche via differential responses to Sdf1/Cxcr4 Signaling. Cell Stem Cell 7:163–173PubMedPubMedCentralCrossRefGoogle Scholar
  53. Koschmann C, Calinescu AA, Nunez FJ, Mackay A, Fazal-Salom J, Thomas D, Mendez F, Kamran N, Dzaman M, Mulpuri L, Krasinkiewicz J, Doherty R, Lemons R, Brosnan-Cashman JA, Li Y, Roh S, Zhao L, Appelman H, Ferguson D, Gorbunova V, Meeker A, Jones C, Lowenstein PR, Castro MG (2016) Atrx loss promotes tumor growth and impairs nonhomologous end joining DNA repair in glioma. Sci Transl Med 8:328ra28PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lagadec C, Vlashi E, Della Donna L, Dekmezian C, Pajonk F (2012) Radiation-induced reprogramming of breast cancer cells. Stem Cells 30:833–844PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lambiv WL, Vassallo I, Delorenzi M, Shay T, Diserens AC, Misra A, Feuerstein B, Murat A, Migliavacca E, Hamou MF, Sciuscio D, Burger R, Domany E, Stupp R, Hegi ME (2011) The Wnt inhibitory factor 1 (Wif1) is targeted in glioblastoma and has a tumor suppressing function potentially by induction of senescence. Neuro-Oncology 13:736–747PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lebon V, Petersen KF, Cline GW, Shen J, Mason GF, Dufour S, Behar KL, Shulman GI, Rothman DL (2002) Astroglial contribution to brain energy metabolism in humans revealed by 13c nuclear magnetic resonance spectroscopy: elucidation of the dominant pathway for neurotransmitter glutamate repletion and measurement of astrocytic oxidative metabolism. J Neurosci 22:1523–1531PubMedPubMedCentralCrossRefGoogle Scholar
  57. Lee SM, Koh H-J, Park D-C, Song BJ, Huh T-L, Park J-W (2002) Cytosolic Nadp + −dependent Isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32:1185–1196PubMedCrossRefPubMedCentralGoogle Scholar
  58. Leung JW, Ghosal G, Wang W, Shen X, Wang J, Li L, Chen J (2013) Alpha thalassemia/mental retardation syndrome X-linked gene product Atrx is required for proper replication restart and cellular resistance to replication stress. J Biol Chem 288:6342–6350PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ, Allis CD (2013) Inhibition of Prc2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861PubMedPubMedCentralCrossRefGoogle Scholar
  60. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, Mclendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lim DA, Tramontin AD, Trevejo JM, Herrera DG, García-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes bmp signaling to create a niche for adult neurogenesis. Neuron 28:713–726PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lin B, Lee H, Yoon JG, Madan A, Wayner E, Tonning S, Hothi P, Schroeder B, Ulasov I, Foltz G, Hood L, Cobbs C (2015) Global analysis of H3k4me3 and H3k27me3 profiles in glioblastoma stem cells and identification of Slc17a7 as a bivalent tumor suppressor gene. Oncotarget 6:5369–5381PubMedPubMedCentralGoogle Scholar
  63. Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lunt SY, Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27:441–464PubMedCrossRefPubMedCentralGoogle Scholar
  65. Martin GR, Jain RK (1994) Noninvasive measurement of interstitial pH profiles in Normal and neoplastic tissue using fluorescence ratio imaging microscopy. Cancer Res 54:5670–5674PubMedPubMedCentralGoogle Scholar
  66. Matsumoto K, Ema M (2014) Roles of VEGF-a signalling in development, regeneration, and tumours. J Biochem 156:1–10PubMedCrossRefGoogle Scholar
  67. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein Vhl targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275PubMedCrossRefGoogle Scholar
  68. Mckenna MC (2007) The glutamate-glutamine cycle is not stoichiometric: fates of glutamate in brain. J Neurosci Res 85:3347–3358PubMedCrossRefGoogle Scholar
  69. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501:328–337PubMedPubMedCentralCrossRefGoogle Scholar
  70. Miller JJ, Shih HA, Andronesi OC, Cahill DP (2017) Isocitrate dehydrogenase-mutant glioma: evolving clinical and therapeutic implications. Cancer 123:4535–4546PubMedCrossRefPubMedCentralGoogle Scholar
  71. Mur P, Rodriguez De Lope A, Diaz-Crespo FJ, Hernandez-Iglesias T, Ribalta T, Fiano C, Garcia JF, Rey JA, Mollejo M, Melendez B (2015) Impact on prognosis of the regional distribution of Mgmt methylation with respect to the Cpg island methylator phenotype and age in glioma patients. J Neuro-Oncol 122:441–450CrossRefGoogle Scholar
  72. Nakano I (2014) Therapeutic potential of targeting glucose metabolism in glioma stem cells. Expert Opin Ther Targets 18:1233–1236PubMedCrossRefPubMedCentralGoogle Scholar
  73. Nakano I (2015) Stem cell signature in glioblastoma: therapeutic development for a moving target. J Neurosurg 122:324–330PubMedCrossRefPubMedCentralGoogle Scholar
  74. Nikbakht H, Panditharatna E, Mikael LG, Li R, Gayden T, Osmond M, Ho CY, Kambhampati M, Hwang EI, Faury D, Siu A, Papillon-Cavanagh S, Bechet D, Ligon KL, Ellezam B, Ingram WJ, Stinson C, Moore AS, Warren KE, Karamchandani J, Packer RJ, Jabado N, Majewski J, Nazarian J (2016) Spatial and temporal homogeneity of driver mutations in diffuse intrinsic pontine glioma. Nat Commun 7:11185PubMedPubMedCentralCrossRefGoogle Scholar
  75. Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D (2002) Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 16:479–489PubMedPubMedCentralCrossRefGoogle Scholar
  76. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K, Cancer Genome Atlas Research N (2010) Identification of a Cpg island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ohba S, Mukherjee J, Johannessen TC, Mancini A, Chow TT, Wood M, Jones L, Mazor T, Marshall RE, Viswanath P, Walsh KM, Perry A, Bell RJ, Phillips JJ, Costello JF, Ronen SM, Pieper RO (2016) Mutant IDH1 expression drives Tert promoter reactivation as part of the cellular transformation process. Cancer Res 76:6680–6689PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ohgaki H, Kleihues P (2013) The definition of primary and secondary glioblastoma. Clin Cancer Res 19:764–772PubMedCrossRefGoogle Scholar
  79. Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH, Parrinello S (2014) Direct cell-cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 16:1045–1056PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K, Charles N, Michor F, Holland EC (2014) Most human non-Gcimp glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 26:288–300PubMedPubMedCentralCrossRefGoogle Scholar
  81. Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, Sandoval K, Rowitch DH, Xu D, Mcquillen PS, Garcia-Verdugo JM, Huang EJ, Alvarez-Buylla A (2016) Extensive migration of young neurons into the infant human frontal lobe. Science 354:pii: aaf7073CrossRefGoogle Scholar
  82. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, Mclendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA Jr, Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) An integrated genomic analysis of human glioblastoma Multiforme. Science 321:1807–1812PubMedPubMedCentralCrossRefGoogle Scholar
  83. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suva ML, Regev A, Bernstein BE (2014) Single-cell RNA-Seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pathania M, De Jay N, Maestro N, Harutyunyan AS, Nitarska J, Pahlavan P, Henderson S, Mikael LG, Richard-Londt A, Zhang Y, Costa JR, Hebert S, Khazaei S, Ibrahim NS, Herrero J, Riccio A, Albrecht S, Ketteler R, Brandner S, Kleinman CL, Jabado N, Salomoni P (2017) H3.3(K27m) cooperates with Trp53 loss and Pdgfra gain in mouse embryonic neural progenitor cells to induce invasive high-grade gliomas. Cancer Cell 32:684–700E9PubMedPubMedCentralCrossRefGoogle Scholar
  85. Peifer M, Hertwig F, Roels F, Dreidax D, Gartlgruber M, Menon R, Kramer A, Roncaioli JL, Sand F, Heuckmann JM, Ikram F, Schmidt R, Ackermann S, Engesser A, Kahlert Y, Vogel W, Altmuller J, Nurnberg P, Thierry-Mieg J, Thierry-Mieg D, Mariappan A, Heynck S, Mariotti E, Henrich KO, Gloeckner C, Bosco G, Leuschner I, Schweiger MR, Savelyeva L, Watkins SC, Shao C, Bell E, Hofer T, Achter V, Lang U, Theissen J, Volland R, Saadati M, Eggert A, De Wilde B, Berthold F, Peng Z, Zhao C, Shi L, Ortmann M, Buttner R, Perner S, Hero B, Schramm A, Schulte JH, Herrmann C, O'sullivan RJ, Westermann F, Thomas RK, Fischer M (2015) Telomerase activation by genomic rearrangements in high-risk neuroblastoma. Nature 526:700–704PubMedPubMedCentralCrossRefGoogle Scholar
  86. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG, Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173PubMedCrossRefGoogle Scholar
  87. Piao Y, Liang J, Holmes L, Henry V, Sulman E, De Groot JF (2013) Acquired resistance to anti-VEGF therapy in glioblastoma is associated with a mesenchymal transition. Clin Cancer Res 19:4392–4403PubMedCrossRefGoogle Scholar
  88. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G, Brem H, Olivi A, Dimeco F, Vescovi AL (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444:761–765PubMedCrossRefGoogle Scholar
  89. Prickaerts P, Adriaens ME, Beucken TVD, Koch E, Dubois L, Dahlmans VEH, Gits C, Evelo CTA, Chan-Seng-Yue M, Wouters BG, Voncken JW (2016) Hypoxia increases genome-wide bivalent epigenetic marking by specific gain of H3k27me3. Epigenetics Chromatin 9:46PubMedPubMedCentralCrossRefGoogle Scholar
  90. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  91. Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of Hifs and cell death pathways. Drug Resist Updat 14:191–201PubMedCrossRefGoogle Scholar
  92. Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A (2011) Corridors of migrating neurons in the human brain and their decline during infancy. Nature 478:382–386PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schurr A, Miller JJ, Payne RS, Rigor BM (1999) An increase in lactate output by brain tissue serves to meet the energy needs of glutamate-activated neurons. J Neurosci 19:34–39PubMedPubMedCentralCrossRefGoogle Scholar
  94. Schwartz DL, Bankson J, Bidaut L, He Y, Williams R, Lemos R, Thitai AK, Oh J, Volgin A, Soghomonyan S, Yeh HH, Nishii R, Mukhopadhay U, Alauddin M, Mushkudiani I, Kuno N, Krishnan S, Bornman W, Lai SY, Powis G, Hazle J, Gelovani J (2011) Hif-1-dependent stromal adaptation to ischemia mediates in vivo tumor radiation resistance. Mol Cancer Res 9:259–270PubMedPubMedCentralCrossRefGoogle Scholar
  95. Semenza GL (2013) Hif-1 mediates metabolic responses to Intratumoral hypoxia and oncogenic mutations. J Clin Invest 123:3664–3671PubMedPubMedCentralCrossRefGoogle Scholar
  96. Semenza GL, Wang GL (1992) A nuclear factor induced by hypozia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454PubMedPubMedCentralCrossRefGoogle Scholar
  97. Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763PubMedPubMedCentralGoogle Scholar
  98. Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, Kim JK, Patel LR, Ying C, Ziegler AM, Pienta MJ, Song J, Wang J, Loberg RD, Krebsbach PH, Pienta KJ, Taichman RS (2011) Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121:1298–1312PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sinnaeve J, Mobley BC, Ihrie RA (2017) Space invaders: brain tumor exploitation of the stem cell niche. Am J Pathol. 188(1):29–38PubMedCrossRefGoogle Scholar
  100. Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664PubMedCrossRefGoogle Scholar
  101. Sui A, Xu Y, Li Y, Hu Q, Wang Z, Zhang H, Yang J, Guo X, Zhao W (2017) The pharmacological role of histone demethylase Jmjd3 inhibitor Gsk-J4 on glioma cells. Oncotarget 8:68591–68598PubMedPubMedCentralGoogle Scholar
  102. Tano K, Shiota S, Collier J, Foote RS, Mitra S (1990) Isolation and structural characterization of a cDNA clone encoding the human DNA repair protein for O6-alkylguanine. Proc Natl Acad Sci U S A 87:686–690PubMedPubMedCentralCrossRefGoogle Scholar
  103. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H, Sakariassen PO, Weinstock A, Wagner A, Lindsay SL, Hock AK, Barnett SC, Ruppin E, Morkve SH, Lund-Johansen M, Chalmers AJ, Bjerkvig R, Niclou SP, Gottlieb E (2015) Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 17:1556–1568PubMedPubMedCentralCrossRefGoogle Scholar
  104. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, Campos C, Fabius AW, Lu C, Ward PS, Thompson CB, Kaufman A, Guryanova O, Levine R, Heguy A, Viale A, Morris LG, Huse JT, Mellinghoff IK, Chan TA (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483PubMedPubMedCentralCrossRefGoogle Scholar
  105. Turcan S, Makarov V, Taranda J, Wang Y, Fabius AWM, Wu W, Zheng Y, El-Amine N, Haddock S, Nanjangud G, Lekaye HC, Brennan C, Cross J, Huse JT, Kelleher NL, Osten P, Thompson CB, Chan TA (2017) Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet. 50(1):62–72PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vander Heiden MG, Lunt SY, Dayton TL, Fiske BP, Israelsen WJ, Mattaini KR, Vokes NI, Stephanopoulos G, Cantley LC, Metallo CM, Locasale JW (2011) Metabolic pathway alterations that support cell proliferation. Cold Spring Harb Symp Quant Biol 76:325–334PubMedCrossRefGoogle Scholar
  107. Venneti S, Huse JT (2015) The evolving molecular genetics of low-grade glioma. Adv Anat Pathol 22:94–101PubMedPubMedCentralCrossRefGoogle Scholar
  108. Venneti S, Thompson CB (2017) Metabolic reprogramming in brain tumors. Annu Rev Pathol 12:515–545PubMedCrossRefPubMedCentralGoogle Scholar
  109. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O'kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN, Cancer Genome Atlas Research N (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110PubMedPubMedCentralCrossRefGoogle Scholar
  110. Warburg O (1956a) On respiratory impairment in cancer cells. Science 124:269–270PubMedPubMedCentralGoogle Scholar
  111. Warburg O (1956b) On the origin of cancer cells. Science 123:309–314PubMedPubMedCentralGoogle Scholar
  112. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153PubMedPubMedCentralCrossRefGoogle Scholar
  113. Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163PubMedCrossRefGoogle Scholar
  114. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wise DR, Deberardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M, Mcmahon SB, Thompson CB (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wright KD, Sabin ND, Cheuk D, Mcnall-Knapp R, Shurtleff SA, Gajjar A, Broniscer A (2015) Incidental diagnosis of diffuse intrinsic pontine glioma in children. Pediatr Blood Cancer 62:1081–1083PubMedPubMedCentralCrossRefGoogle Scholar
  117. Xu L, Fukumura D, Jain RK (2002) Acidic extracellular pH induces vascular endothelial growth factor (Vegf) in human glioblastoma cells via Erk1/2 Mapk signaling pathway: mechanism of low pH-induced Vegf. J Biol Chem 277:11368–11374PubMedCrossRefGoogle Scholar
  118. Yan H, Parsons DW, Jin G, Mclendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedPubMedCentralCrossRefGoogle Scholar
  119. Yin J, Park G, Kim TH, Hong JH, Kim YJ, Jin X, Kang S, Jung JE, Kim JY, Yun H, Lee JE, Kim M, Chung J, Kim H, Nakano I, Gwak HS, Yoo H, Yoo BC, Kim JH, Hur EM, Lee J, Lee SH, Park MJ, Park JB (2015) Pigment epithelium-derived factor (PEDF) expression induced by EGFRvIII promotes self-renewal and tumor progression of glioma stem cells. PLoS Biol 13:E1002152PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yu T, Wu Y, Hu Q, Zhang J, Nie E, Wu W, Wang X, Wang Y, Liu N (2017) CBX7 is a glioma prognostic marker and induces G1/S arrest via the silencing of CCNE1. Oncotarget 8:26637–26647PubMedPubMedCentralGoogle Scholar
  121. Yun Z, Lin Q (2014) Hypoxia and regulation of cancer cell stemness. Adv Exp Med Biol 772:41–53PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Neuroscience, Cell Biology and PhysiologyWright State UniversityDaytonUSA
  2. 2.Department of Neurosurgery, Dayton Children’s Hospital, One Children’s PlazaDaytonUSA
  3. 3.Department of Pediatrics, Boonshoft School of MedicineWright State UniversityDaytonUSA

Personalised recommendations