Myelin pp 3-22 | Cite as

Cellular Signal-Regulated Schwann Cell Myelination and Remyelination

  • Tomohiro Torii
  • Yuki Miyamoto
  • Junji YamauchiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1190)


Increasing studies have demonstrated multiple signaling molecules responsible for oligodendrocytes and Schwann cells development such as migration, differentiation, myelination, and axo-glial interaction. However, complicated roles in these events are still poorly understood. This chapter focuses on well established intracellular signaling transduction and recent topics that control myelination and are elucidated from accumulating evidences. The underlying molecular mechanisms, which involved in membrane trafficking through small GTPase Arf6 and its activator cytohesins, demonstrate the crosstalk between well established intracellular signaling transduction and a new finding signaling pathway in glial cells links to physiological phenotype and essential role in peripheral nerve system (PNS). Since Arf family proteins affect the expression levels of myelin protein zero (MPZ) and Krox20, which is a transcription factor regulatory factor in early developmental stages of Schwann cells, Arf proteins likely to be key regulator for Schwann cells development. Herein, we discuss how intracellular signaling transductions in Schwann cells associate with myelination in CNS and PNS.


Schwann cell Myelination Cytohein Arf 


  1. Ackerman SD, Garcia C, Piao X, Gutmann DH, Monk KR (2015) The adhesion GPCR Gpr56 regulates oligodendrocyte development via interaction with Gα12/13 and RhoA. Nat Commun 6:6122PubMedPubMedCentralCrossRefGoogle Scholar
  2. Barros CS, Nguyen T, Spencer KS, Nishiyama A, Colognato H, Muller U (2009) Beta1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth. Development 136:2717–2724PubMedPubMedCentralCrossRefGoogle Scholar
  3. Basak S, Desai DJ, Rho EH, Ramos R, Maurel P, Kim HA (2015) E-cadherin enhances neuregulin signaling and promotes Schwann cell myelination. Glia 63:1522–1536PubMedCrossRefGoogle Scholar
  4. Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K, Gross RW, Patti GJ, Milbrandt J (2014) Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat Neurosci 17:1351–1361PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bercury KK, Macklin WB (2015) Dynamics and mechanisms of CNS myelination. Dev Cell 32:447–458PubMedPubMedCentralCrossRefGoogle Scholar
  6. Biffiger K, Bartsch S, Montag D, Aguzzi A, Schachner M, Bartsch U (2000) Severe hypomyelination of the murine CNS in the absence of myelin-associated glycoprotein and Fyn tyrosine kinase. J Neurosci 20:7430–7437PubMedPubMedCentralCrossRefGoogle Scholar
  7. Binder MD, Cate HS, Prieto AL, Kemper D, Butzkueven H, Gresle MM, Cipriani T, Jokubaitis VG, Carmeliet P, Kilpatrick TJ (2008) Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J Neurosci 28:5195–5206PubMedPubMedCentralCrossRefGoogle Scholar
  8. Binder MD, Xiao J, Kemper D, Ma GZ, Murray SS, Kilpatrick TJ (2011) Gas6 increases myelination by oligodendrocytes and its deficiency delays recovery following cuprizone-induced demyelination. PLoS One 6:e17727PubMedPubMedCentralCrossRefGoogle Scholar
  9. Boshans RL, Szanto S, van Aelst L, D’Souza-Schorey C (2000) ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol Cell Biol 20:3685–3694PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bouhy D, Timmerman V (2013) Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann Neurol 74:391–396PubMedCrossRefGoogle Scholar
  11. Buser AM, Eme B, Werner HB, Nave KA, Schareren-Wiemers N (2009) The septin cytoskeleton in myelinating glia. Mol Cell Neurosci 40:156–166PubMedCrossRefGoogle Scholar
  12. Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8:1476–1485PubMedCrossRefGoogle Scholar
  13. Chan JR, Cosgaya JM, Wu YJ, Shooter EM (2001) Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proc Natl Acad Sci U S A 98:14661–14668PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chan JR, Jolicoeur C, Yamauchi J, Elliott J, Fawcett JP, Ng BK, Cayouette M (2006) The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314(5800):832–836PubMedCrossRefGoogle Scholar
  15. Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D, Corfas G (2006) Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 26:3079–3086PubMedPubMedCentralCrossRefGoogle Scholar
  16. Crawford AT, Desai D, Gokina P, Basak S, Kim HA (2008) E-cadherin expression in postnatal Schwann cells is regulated by the cAMP-dependent protein kinase a pathway. Glia 56:1637–1647PubMedPubMedCentralCrossRefGoogle Scholar
  17. D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358PubMedCrossRefGoogle Scholar
  18. Delague V, Jacquier A, Hamadouche T, Poitelon Y, Baudot C, Boccaccio I, Chouery E, Chaouch M, Kassouri N, Jabbour R, Grid D, Mégarbané A, Haase G, Lévy N (2007) Mutations in FGD encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 81:1–16PubMedPubMedCentralCrossRefGoogle Scholar
  19. Domènech-Estévez E, Baloui H, Meng X, Zhang Y, Deinhardt K, Dupree JL, Einheber S, Chrast R, Salzer JL (2016) Akt regulates axon wrapping and myelin sheath thickness in PNS. J Neurosci 36:4506–4521PubMedPubMedCentralCrossRefGoogle Scholar
  20. D’Urso D, Prior R, Greiner-Petter R, Gabreëls-Festen AA, Müller HW (1998) Overloaded endoplasmic reticulum-Golgi compartments, a possible pathomechanism of peripheral neuropathies caused by mutations of the peripheral myelin protein PMP22. J Neurosci 18:731–740PubMedPubMedCentralCrossRefGoogle Scholar
  21. Etxaniz U, Pérez-San Vicente A, Gago-López N, García-Dominguez M, Iribar H, Aduriz A, Pérez-López V, Burgoa I, Irizar H, Muñoz-Culla M, Vallejo-lllarramendi A, Leis O, Matheu A, Martin AG, Otaegui D, López-Mato MP, Gutilérrez-Rivera A, MacLellan R, Izeta A (2014) Neural-competent cells of adult human dermis belong to the Schwann lineage. Stem Cell Reports 3:774–788PubMedPubMedCentralCrossRefGoogle Scholar
  22. Fabrizi GM, Taioli F, Cavallaro T, Rigatelli F, Simonati A, Mariani G, Perrone P, Rizzuto N (2000) Focally folded myelin in Charcot-Marie-Tooth neuropathy type 1B with Ser49Leu in the myelin protein zero. Acta Neuropathol 100:299–304PubMedCrossRefGoogle Scholar
  23. Fannon AM, Sherman DL, Ilyina-Gragerova G, Brophy PJ, Friedrich VL Jr, Colman DR (1995) Novel E-cadherin-mediated adhesion in peripheral nerve: Schwann cell architecture is stabilized by autotypic adherens junctions. J Cell Biol 129:189–202CrossRefGoogle Scholar
  24. Fernandez-Valle C, Gorman D, Gomez AM, Bunge MB (1997) Actin plays a role in both changes in cell shape and gene-expression associated with Schwann cell myelination. J Neurosci 17:241–250PubMedPubMedCentralCrossRefGoogle Scholar
  25. Fledrich R, Stassart RM, Klink A, Rasch LM, Prukop T, Haag L, Cresnik D, Kungl T, Abdelaal TA, Keric N, Stadelmann C, Brück W, Nave KA (2014) Soluble neurogulin-1 modulates disease pathogenesis in rodent models of Charcot-Marie-Tooth disease 1A. Nat Med 20:1055–1061PubMedPubMedCentralCrossRefGoogle Scholar
  26. Flores AI, Narayanan SP, Morse EN, Shick HE, Yin X, Kidd G, Avila RL, Kirschner DA, Macklin WB (2008) Constitutively active Akt induces enhanced myelination in the CNS. J Neurosci 28:7174–7183PubMedPubMedCentralCrossRefGoogle Scholar
  27. Franco M, Peters PJ, Boretto J, van Donselaar E, Neri A, D’Souza-Schorey C, Chavrier P (1999) EFA6, a sec7 domain-containing exchange factor for ARF6, coordinates membrane recycling and actin cytoskeleton organization. EMBO J 16:5445–5454Google Scholar
  28. Fujita N, Kemper A, Dupree J, Nakayasu H, Bartsch U, Schachner M, Maeda N, Suzuki K, Popko B (1998) The cytoplasmic domain of the large myelin-associated glycoprotein isoform is needed for proper CNS but not peripheral nervous system myelination. J Neurosci 18:1970–1978PubMedPubMedCentralCrossRefGoogle Scholar
  29. Fünfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Möbius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485(7399):517–521PubMedPubMedCentralCrossRefGoogle Scholar
  30. Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Manabu M, Bialas A, Chang BS, Stevens B, Corfas G, Piao X (2015) The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun 6:6121PubMedPubMedCentralCrossRefGoogle Scholar
  31. Giovannini M, Robanus-Maandag E, Niwa-Kawakita M, van der Valk M, Woodruff JM, Goutebroze L, Mérel P, Berns A, Thomas G (1999) Schwann cell hyperplasia and tumors in transgenic mice expressing a naturally occurring mutant NF2 protein. Genes Dev 13:978–986PubMedPubMedCentralCrossRefGoogle Scholar
  32. Godowski PJ, Mark MR, Chen J, Sadick MD, Raab H, Hammonds RG (1995) Reevaluation of the roles of protein S and gas6 as ligands for the receptor tyrosine kinase Rse/Tyro 3. Cell 82:355–358PubMedCrossRefGoogle Scholar
  33. Goebbels S, Oltrogge JH, Wolfer S, Wieser GL, Nientiedt T, Pieper A, Ruhwedel T, Sereda MW, Nave KA (2012) Genetic disruption of PTEN in a novel mouse model of tomaculous neuropathy. EMBO Mol Med 4:486–499PubMedPubMedCentralCrossRefGoogle Scholar
  34. Goldfinger LE, Ptak C, Jeffery ED, Shabanowitz J, Hunt DF, Ginsberg MH (2006) RLIP (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration. J Cell Biol 174:877–888PubMedPubMedCentralCrossRefGoogle Scholar
  35. Goudarzi S, Rivera A, Butt AM, Hafizi S (2016) Gas6 promotes oligodendrogenesis and myelination in adult central nervous system and after lysolecithin-induced demyelination. ASN Neuro 14. pii: 1759091416668430Google Scholar
  36. Guo L, Moon C, Niehaus K, Zheng Y, Ratner N (2012) Rac1 controls Schwann cell myelination through cAMP and NF2/merlin. J Neurosci 32:17251–17261PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guo L, Moon C, Zheng Y, Ratner N (2013) Cdc42 regulates Schwann cell radial sorting and myelin sheath folding through NF2/merlin-dependent and independent signaling. J Neurosci 61:1906–1921Google Scholar
  38. Hasse B, Bosse F, Muller HW (2002) Proteins of peripheral myelin are associated with glycosphingolipid/cholesterol-enriched membranes. J Neurosci Res 69:227–232PubMedCrossRefGoogle Scholar
  39. Hempstead BL (2005) Coupling neurotrophins to cell migration through selective guanine nucleotide exchange factor activation. Proc Natl Acad Sci U S A 102:5645–5646PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hodge RG, Ridley AJ (2016) Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 17:496–510PubMedCrossRefGoogle Scholar
  41. Horn M, Baumann R, Pereira JA, Sidiropoulos PN, Somandin C, Welzl H, Stendel C, Lühman T, Wessig C, Toyka KV, Relvas JB, Senderek J, Suter U (2012) Myelin is dependent on the Charcot-Marie-Tooth Type 4H disease culprit protein FRABIN/FGD4 in Schwann cells. Brain 135:3567–3583PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hu J, Bai X, Bowen JR, Dolat L, Korobova F, Yu W, Baas PW, Svitkina T, Gallo G, Spiliotis ET (2012) Septin-driven coordination of actin and microtubule remodeling regulates the collateral branching of axons. Curr Biol 22:1109–1115PubMedPubMedCentralCrossRefGoogle Scholar
  43. Iida M, Koike H, Ando T, Sugiura M, Yamamoto M, Tanaka F, Sobue G (2012) A novel MPZ mutation in Charcot-Marie-Tooth disease type 1B with focally folded myelin and multiple entrapment neuropathies. Neuromuscul Disord 22:166–169PubMedCrossRefGoogle Scholar
  44. Ito H, Atsuzawa K, Morishita R, Usuda N, Sudo K, Iwamoto I, Mizutani K, Katoh-Semba R, Nozawa Y, Asano T, Nagata K (2009) Sept8 controls the binding of vesicle-associated membrane protein 2 to synaptophysin. J Neurochem 108:867–880PubMedCrossRefPubMedCentralGoogle Scholar
  45. Jin F, Dong B, Georgiou J, Jiang Q, Zhang J, Bharioke A, Qiu F, Lommel S, Feltri ML, Wrabetz L, Roder JC, Eyer J, Chen X, Peterson AC, Siminovitch KA (2011) N-WASp is required for Schwann cell cytoskeletal dynamics, normal myelin gene expression and peripheral nerve myelination. Development 138:1329–1337PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kochański A, Drac H, Jedrzejowska H, Hausmanowa-Petrusewicz I (2003) Focally folded myelin in Charcot-Marie-Tooth type 1B disease is associated with Asn131Lys mutation in myelin protein zero gene: short report. Eur J Neurol 10:547–549PubMedCrossRefPubMedCentralGoogle Scholar
  47. Krämer-Albers EM, White R (2011) From axon-glial signalling to myelination: the integrating role of oligodendroglial Fyn kinase. Cell Mol Life Sci 68:2003–2012CrossRefGoogle Scholar
  48. La Marca R, Cerri F, Horiuchi K, Bachi A, Feltri ML, Wrabetz L, Biobel CP, Quattrini A, Salzer JL, Taveggla C (2011) TACE (ADAM17) inhibits Schwann cell myelination. Nat Neurosci 14:857–865PubMedPubMedCentralCrossRefGoogle Scholar
  49. Lallemand D, Curto M, Saotome I, Giovannini M, MacClatchey AI (2003) NF2 deficiency promotes tumorigenesis and metastasis by destabilizing adherens junctions. Genes Dev 17:1090–1100PubMedPubMedCentralCrossRefGoogle Scholar
  50. Laursen LS, Chan CW, French-Constant C (2009) An integrin-contactin complex regulates CNS myelination by differential Fyn phosphorylation. J Neurosci 29:9174–9185PubMedPubMedCentralCrossRefGoogle Scholar
  51. Lyons KF, Naylor SG, Scholze A, Talbot WS (2009) Kif1b is essential for mRNA localization in oligodendrocytes and development of myelinated axons. Nat Genet 41:854–858PubMedPubMedCentralCrossRefGoogle Scholar
  52. Marchesin V, Montagnac G, Chavrier P (2015) ARF6 promotes the formation of Rac1 and WAVE-dependent ventral F-actin rosettes in breast cancer cells in response to epidermal growth factor. PLoS One 10:e0121747PubMedPubMedCentralCrossRefGoogle Scholar
  53. Maurel P, Einheber S, Galinska J, Thaker P, Lam I, Rubin MB, Scherer SS, Murakami Y, Gutmann DH, Salzer JL (2007) Nectin-like proteins mediate axon Schwann cell interactions along the internode and are essential for myelination. J Cell Biol 178:861–874PubMedPubMedCentralCrossRefGoogle Scholar
  54. Meyer Z, Hörste G, Nave KA (2006) Animal models of inherited neuropathies. Curr Opin Neurol 19:464–473CrossRefGoogle Scholar
  55. Mityamoto Y, Torii T, Tanoue A, Kawahara K, Arai M, Tsumura H, Ogata T, Nagao M, Terada N, Yamamoto M, Takashima S, Yamauchi J (2017) Neuregulin-1 type III knockout mice exhibit delayed migration of Schwann cell precursors. Biochem Biophys Res Commun 486:506–513CrossRefGoogle Scholar
  56. Miyamoto Y, Torii T, Nakamura K, Takashima S, Sanbe A, Tanoue A, Yamauchi J (2013) Signaling through Arf6 guanine-nucleotide exchange factor cytohesin-1 regulates migration in Schwann cells. Cell Signal 25:1379–1387PubMedCrossRefGoogle Scholar
  57. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, Ito A, Ogata T, Terada N, Tanoue A, Yamauchi J (2015) Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell 26:3489–3503PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mogha A, Harty BL, Carlin D, Joseph J, Sanchez NE, Suter U, Piao X, Cavalli V, Monk KR (2016) Gpr126/Adgrg6 has Schwann cell autonomous and nonautonomous function in peripheral nerve injury and repair. J Neurosci 36:12351–12367PubMedPubMedCentralCrossRefGoogle Scholar
  59. Monk KR, Naylor SG, Glenn TD, Mercurio S, Perlin JR, Dominguez C, Moens CB, Talbot WS (2009) A G protein-coupled receptor is essential for Schwann cells to initiate myelination. Science 325:1402–1405PubMedPubMedCentralCrossRefGoogle Scholar
  60. Narayanan SP, Flores AI, Wang F, Macklin WB (2009) Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination. J Neurosci 29:6860–6870PubMedPubMedCentralCrossRefGoogle Scholar
  61. Nave KA, Salzer JL (2006) Axonal regulation of myelination by neuregulin 1. Curr Opin Neurobiol 16:492–500CrossRefGoogle Scholar
  62. Nave KA, Werner HB (2014) Myelination of the nervous system: mechanisms and function. Annu Rev Cell Dev Biol 30:503–533PubMedPubMedCentralGoogle Scholar
  63. Nawaz S, Sánchez P, Schmitt S, Snaidero N, Mitkovski M, Velte C, Brückner BR, Alexopoulos I, Czopka T, Jung SY, Rhee JS, Janshoff A, Witke W, Schaap IAT, Lyons DA, Simons M (2015) Actin filament turnover drives leading edge growth during myelin sheath formation in the central nervous system. Dev Cell 34:139–151PubMedPubMedCentralCrossRefGoogle Scholar
  64. Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21:759–773PubMedCrossRefGoogle Scholar
  65. Noseda R, Guerrero-Valero M, Alberizzi V, Previtali SC, Sherman DL, Palmisano M, Huganir RL, Nave KA, Cuenda A, Feltri ML, Brophy PJ, Bolino A (2016) Kif13b regulates PNS and CNS myelination through the Dlg1 scaffold. PLoS Biol 14:2100–2440CrossRefGoogle Scholar
  66. Novak N, Bar V, Sabanay H, Frechter S, Jaegle M, Snapper SB, Meijer D, Peles E (2011) N-WASP is required for membrane wrapping and myelination by Schwann cells. J Cell Biol 192:243–250PubMedPubMedCentralCrossRefGoogle Scholar
  67. Paavola KJ, Sidik H, Zuchero JB, Eckart M, Talbot WS (2014) Type 4 collagen is an activating ligand for the adhesion G protein-coupled receptor GPR126. Sci Signal 7:ra76PubMedPubMedCentralCrossRefGoogle Scholar
  68. Palazuelos J, Crawford HC, Klingener M, Sun B, Karelis J, Raines EW, Aguirre A (2014) TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination. J Neurosci 34:11884–11896PubMedPubMedCentralCrossRefGoogle Scholar
  69. Palazuelos J, Klingener M, Raines EW, Crawford HC, Aguirre A (2015) Oligodendrocyte regeneration and CNS remyelination require TACE/ADAM17. J Neurosci 35:12241–12247PubMedPubMedCentralCrossRefGoogle Scholar
  70. Pareyson D, Marchesi C (2009) Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 8:654–667PubMedPubMedCentralCrossRefGoogle Scholar
  71. Patzig J, Jahn O, Wichert SP, de Monasterio-Schrader P, Rosfa S, Kuharev L, Yan K, Bormuth I, Bremer J, Aguzzi A, Orfaniotou F, Hesse D, Schwab MH, Möbius W, Nave KA, Werner HB (2011) Quantitative and integrative proteome analysis of peripheral nerve myelin identifies novel myelin proteins and candidate neuropathy loci. J Neurosci 31:16369–16386PubMedPubMedCentralCrossRefGoogle Scholar
  72. Patzig J, Erwig MS, Tenzer S, Kusch K, Dibaj P, Möbius W, Goebbels S, Schaeren-Wiemers N, Nave KA, Werner HB (2016) Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction. elife 5. pii:e17119Google Scholar
  73. Pegtel DM, Ellenbroek SI, Mertens AE, van der Kammen RA, de Rooij J, Collard JG (2007) The Par-Tiam1 complex controls persistent migration by stabilizing microtubule-dependent front-rear polarity. Curr Biol 17:1623–1634PubMedCrossRefGoogle Scholar
  74. Perlin JR, Talbot WS (2007) Putting the glue in glia: Necls mediate Schwann cell–axon adhesion. J Cell Biol 178:721PubMedPubMedCentralCrossRefGoogle Scholar
  75. Perlin JR, Lush ME, Stephens WZ, Piotrowski T, Talbot WS (2011) Neuronal neuregulin 1 type III directs Schwann cell migration. Development 138:4639–4648PubMedPubMedCentralCrossRefGoogle Scholar
  76. Pooya S, Liu X, Kumar VB, Anderson J, Imai F, Zhang W, Ciraolo G, Ratner N, Setchell KD, Yoshida Y, Jankowski MP, Dasgupta B (2014) The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat Commun 5:4993PubMedPubMedCentralCrossRefGoogle Scholar
  77. Prieto AL, Weber JL, Tracy S, Heeb MJ, Lai C (1999) Gas6, a ligand for the receptor protein-tyrosine kinase Tyro-3, is widely expressed in the central nervous system. Brain Res 816:646–661Google Scholar
  78. Prieto AL, Weber JL, Lai C (2000) Expression of the receptor protein‐tyrosine kinases Tyro‐3, Axl, and Mer in the developing rat central nervous system. J Comp Neurol 425:295–314PubMedCrossRefGoogle Scholar
  79. Quast T, Tappertzhofen B, Schild C, Grell J, Czeloth N, Förster R, Alon R, Fraemohs L, Dreck K, Weber C, Lämmermann T, Sixt M, Kolanus W (2009) Cytohesin-1 controls the activation of RhoA and modulates integrin-dependent adhesion and migration of dendritic cells. Blood 113:5801–5810PubMedCrossRefGoogle Scholar
  80. Radhakrishna H, Al-Awar O, Khachikian Z, Donaldson JG (1999) Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. J Cell Sci 112:855–866PubMedGoogle Scholar
  81. Rossor AM, Polke JM, Houlden H, Reilly MM (2013) Clinical implications of genetic advances in Charcot-Marie-Tooth disease. Nat Rev Neurol 9:562–571PubMedCrossRefGoogle Scholar
  82. Rothlin CV, Carreara-Silva EA, Bosurgi L, Ghosh S (2015) TAM receptor signaling in immune homeostasis. Annu Rev Immunol 33:355–391PubMedPubMedCentralCrossRefGoogle Scholar
  83. Sadok A, Marshall CJ (2014) Rho GTPases: masters of cell migration. Small GTPases 5:e29710PubMedPubMedCentralCrossRefGoogle Scholar
  84. Salzer JL (2015) Schwann cell myelination. Cold Spring Harb Perspect Biol 7:a020529PubMedPubMedCentralCrossRefGoogle Scholar
  85. Santy LC, Casanova JE (2001) Activation of ARF6 by ARNO stimulates epithelial cell migration through downstream activation of both Rac1 and phospholipase D. J Cell Biol 154:599–610PubMedPubMedCentralCrossRefGoogle Scholar
  86. Simons M, Kramer EM, Thiele C, Stoffel W, Trotter J (2000) Assembly of myelin by association of proteolipid protein with cholesterol- and galactosylceramide-rich membrane domains. J Cell Biol 151:143–154PubMedPubMedCentralCrossRefGoogle Scholar
  87. Spiegel I, Adamsky K, Eshed Y, Milo F, Sabanay H, Sarig-Nadir O, Horresh I, Scherer SS, Rasband MN, Peles E (2007) A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat Neurosci 10:861–869PubMedPubMedCentralCrossRefGoogle Scholar
  88. Stendel C, Roos A, Deconinck T, Pereira J, Castagner F, Niemann A, Kirscher J, Korinthenberg R, Ketelsen UP, Battaloglu E, Parman Y, Nicholson G, Ouvrier R, Seeger J, De Jonghe P, Weis J, Krüttgen A, Rudnik-Schöneborn S, Bergmann C, Suter U, Zerres K, Timmerman V, Relvas JB, Senderek J (2007) Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 81:158–164PubMedPubMedCentralCrossRefGoogle Scholar
  89. Takenawa T, Suetsugu S (2007) The WASP-WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 8:37–48PubMedCrossRefGoogle Scholar
  90. Taveggia C, Salzer JL (2007) PARsing the events of myelination. Nat Neurosci 10:17–18PubMedCrossRefGoogle Scholar
  91. Taveggia C, Thaker P, Petrylak A, Caporaso GL, Toews A, Falls DL, Einheber S, Salzer JL (2008) Type III neuregulin-1 promotes oligodendrocyte myelination. Glia 56:284–293CrossRefGoogle Scholar
  92. Tep C, Kim ML, Opincariu LI, Limpert AS, Chan JR, Appel B, Carter BD, Yoon SO (2012) Brain-derived neurotrophic factor (BDNF) induces polarized signaling of small GTPase (Rac1) protein at the onset of Schwann cell myelination through partitioning-defective 3 (Par3) protein. J Biol Chem 287:1600–1608PubMedCrossRefGoogle Scholar
  93. Torii T, Miyamoto Y, Sanbe A, Nishimura K, Yamauchi J, Tanoue A (2010) Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem 285:24270–24281PubMedPubMedCentralCrossRefGoogle Scholar
  94. Torii T, Miyamoto Y, Onami N, Tsumura H, Nemoto N, Kawahara K, Kato M, Kotera J, Nakamura K, Tanoue A, Yamauchi J (2013) In vivo expression of the Arf6 guanine-nucleotide exchange factor cytohesin-1 in mice exhibits enhanced myelin thickness in nerves. J Mol Neurosci 51:522–531PubMedPubMedCentralCrossRefGoogle Scholar
  95. Torii T, Ohno N, Miyamoto Y, Kawahara K, Saitoh Y, Nakamura K, Takashima S, Sakagami H, Tanoue A, Yamauchi J (2015) Arf6 guanine-nucleotide exchange factor cytohesin-2 regulates myelination in nerves. Biochem Biophys Res Commun 460:819–825PubMedCrossRefGoogle Scholar
  96. Trapp BD, Andrews SB, Cootauco C, Quarles R (1989) The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J Cell Biol 109:2417–2426PubMedCrossRefGoogle Scholar
  97. Umemori H, Sato S, Yagi T, Aizawa S, Yamamoto T (1994) Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367:572–576CrossRefGoogle Scholar
  98. Werner HB, Krämer-Albers EM, Strenzke N, Saher G, Tenzer S, Ohno-Iwashita Y, De Monasterio-Schrader P, Möbius W, Moser T, Griffiths IR, Nave KA (2013) A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 61:567–586PubMedCrossRefGoogle Scholar
  99. White R, Krämer-Albers EM (2014) Axon-glia interaction and membrane traffic in myelin formation. Front Cell Neurosci 7:284PubMedPubMedCentralCrossRefGoogle Scholar
  100. Yamauchi J, Chan JR, Shooter EM (2004) Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases. Proc Natl Acad Sci U S A 101:8774–8779PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yamauchi J, Miyamoto Y, Tanoue A, Shooter EM, Chan JR (2005) Ras activation of a Rac1 exchange factor, Tiam1, mediates neurotrophin-3-induced Schwann cell migration. Proc Natl Acad Sci U S A 102:14889–14894PubMedPubMedCentralCrossRefGoogle Scholar
  102. Yamauchi J, Miyamoto Y, Jonah CR, Tanoue A (2008) ErbB2 directly activates the exchange factor Dock7 to promote Schwann cell migration. J Cell Biol 181:351–365PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yamauchi J, Miyamoto Y, Hamasaki H, Sanbe A, Kusakawa S, Nakamura A, Tsumura H, Maeda M, Nemoto N, Kawahara K, Torii T, Tanoue A (2011) The atypical Guanine-nucleotide exchange factor, Dock7, negatively regulates Schwann cell differentiation and myelination. J Neurosci 31:12579–12592PubMedPubMedCentralCrossRefGoogle Scholar
  104. Yamauchi J, Miyamoto Y, Torii T, Takashima S, Kondo K, Kawahara K, Nemoto N, Chan JR, Tsujimoto G, Tanoue A (2012) Phosphorylation of cytohesin-1 by Fyn is required for initiation of myelination and the extent of myelination during development. Sci Signal 5:ra69PubMedCrossRefGoogle Scholar
  105. Zollinger DR, Chang KJ, Baalman K, Kim S, Rasband MN (2015) The polarity protein Pals1 regulates radial sorting of axon. J Neurosci 35:10474–10484PubMedPubMedCentralCrossRefGoogle Scholar
  106. Zuchero JB, Fu MM, Sloan SA, Ibrahim A, Olson A, Zaremba A, Dugas JC, Wienbar S, Caprariello AV, Kantor C, Leonoudakis D, Lariosa-Willingham K, Kronenberg G, Gertz K, Soderling SH, Miller RH, Barres BA (2015) CNS myelin wrapping is driven by actin disassembly. Dev Cell 34:152–167PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Graduate School of Brain ScienceDoshisha UniversityKyotanabe-shiJapan
  2. 2.Department of PharmacologyNational Research Institute for Child Health and DevelopmentSetagayaJapan
  3. 3.Laboratory of Molecular Neuroscience and NeurologyTokyo University of Pharmacy and Life ScienceHachiojiJapan

Personalised recommendations