Advertisement

Effects of the Roughness in the Optical Response of a 2DPC That Have Dielectric or Dispersive LHM Cylindrical Inclusions: The Triangular Lattice

  • V. Castillo-Gallardo
  • L. Puente-Díaz
  • E. Lozano-Trejo
  • H. Pérez-AguilarEmail author
  • A. Mendoza-Suárez
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 233)

Abstract

In this work, a numerical technique known as integral equation method (IEM) was used to model the optical response of two-dimensional photonic structures of hexagonal lattice with rods that have smooth and rough surfaces, under TM polarization. Photonic structures were modeled by different materials. One of them was formed with dielectric–dielectric media and the other with dielectric–dispersive LHM media. We found that the optical response was modulated by the roughness of the surface of the inclusions. We also observed that the scattering patterns depend on the type of photonic structure and the incidence angle. Additionally, when we consider the two-dimensional photonic structure with rough surfaces, we approach a real physical system and this causes changes in the reflective optical properties. This property is very useful and has multiple applications in waveguides, filters, omnidirectional mirrors, beam splitters, and so on.

Notes

Acknowledgments

This research was supported by Consejo Nacional de Ciencia y Tecnología through a scholarship for Castillo-Gallardo, Puente-Díaz and Lozano-Trejo. Also, Pérez-Aguilar and Mendoza-Suárez express their gratitude to the Coordinación de la Investigación Científica of the Universidad Michoacana de San Nicolás de Hidalgo for the financial support granted for the development of this research project.

References

  1. 1.
    J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008), Chaps. 4–6Google Scholar
  2. 2.
    A. Mukherjee, A.D. Ariza-Flores, R.F. Balderas-Valadez, V. Agarwal, Controlling the optical properties of composite multilayered photonic structures: effect of superposition. Opt. Express 21, 17324–17339 (2013).  https://doi.org/10.1364/OE.21.017324
  3. 3.
    T.V.K. Karthik, L. Martinez, V. Agarwal, Porous silicon ZnO/SnO2 structures for CO2 detection. J. Alloy. Compd. 731, 853–863 (2017).  https://doi.org/10.1016/j.jallcom.2017.10.070CrossRefGoogle Scholar
  4. 4.
    T.F. Krauss, R.M. De La Rue, Photonic crystals in the optical regime: past, present and future. Prog. Quant. Electron. 23, 51–96 (1999).  https://doi.org/10.1016/S0079-6727(99)00004-XCrossRefADSGoogle Scholar
  5. 5.
    A. Mendoza-Suárez, F. Villa-Villa, Numerical method based on the solution of integral equations for the calculation of the band structure and reflectance of one- and two-dimensional photonic crystals. J. Opt. Soc. Am. B 23, 2249–2256 (2006).  https://doi.org/10.1364/JOSAB.23.002249
  6. 6.
    A.A. Maradudin, T. Michel, A.R. McGurn, E.R. Méndez, Enhanced backscattering of light from a random grating. Annals Phys. 203(2), 255–307 (1990).  https://doi.org/10.1016/0003-4916(90)90172-KCrossRefADSGoogle Scholar
  7. 7.
    H.I. Pérez, C.I. Valencia, E.R. Méndez, J.A. Sánchez-Gil, On the transmission of diffuse light through thick slits. J. Opt. Soc. Am. A 26(4), 909–918 (2009).  https://doi.org/10.1364/JOSAA.26.000909CrossRefADSGoogle Scholar
  8. 8.
    H. Perez-Aguilar, A. Mendoza-Suárez, E.S. Tututi, I.F. Herrera-González, Disordered field patterns in a waveguide with periodic surfaces. Prog. Electromagn. Res. 48, 329–346 (2013).  https://doi.org/10.2528/PIERB12120509CrossRefGoogle Scholar
  9. 9.
    T. Nordam, P.A. Letnes, I. Simonsen, A.A. Maradudin, Numerical solutions of the Rayleigh equations for the scattering of light from a two-dimensional randomly rough perfectly conducting surface. J. Opt. Soc. Am. A 31, 1126–1134 (2014).  https://doi.org/10.1364/JOSAA.31.001126CrossRefADSGoogle Scholar
  10. 10.
    A. González-Alcalde, J.P. Banon, O.S. Hetland, A.A. Maradudin, E.R. Méndez, T. Nordam, I. Simonsen, Experimental and numerical studies of the scattering of light from a two-dimensional randomly rough interface in the presence of total internal reflection: optical Yoneda peaks. Opt. Express 24, 25995–26005 (2016).  https://doi.org/10.1364/OE.24.025995
  11. 11.
    S. Hughes, S. Ramunno, J.F. Young, J.E. Sipe, Optical scattering loss due to disorder and fabrication roughness in semiconductor photonic crystal slab waveguides, in International Quantum Electronics Conference IThL5 (2004).  https://doi.org/10.1364/IQEC.2004.IThL5
  12. 12.
    A. Mandatori, M. Bertolotti, C. Sibilia, B.J. Hoenders, M. Scalora, Coherence effects in propagation through one-dimensional photonic bandgap structures with a rough glass interface. J. Opt. Soc. Am. B 24, 2921–2929 (2007).  https://doi.org/10.1364/JOSAB.24.002921
  13. 13.
    H.Y. Wu, M. Schaden, Perturbative roughness corrections to electromagnetic Casimir energies. Phys. Rev. D 89, 105003 (2014).  https://doi.org/10.1103/PhysRevD.89.105003CrossRefADSGoogle Scholar
  14. 14.
    L. Ondič, M. Varga, I. Pelant, J. Valenta, A. Kromka, R.G. Elliman, Silicon nanocrystal-based photonic crystal slabs with broadband and efficient directional light emission. Scientific Reports 7, 5763 (2017).  https://doi.org/10.1038/s41598-017-05973-yCrossRefADSGoogle Scholar
  15. 15.
    R.F. Balderas-Valadez, V. Agarwal, C. Pacholski, Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching. RSC Adv. 6(26), 21430–21434 (2016).  https://doi.org/10.1039/C5RA26816HCrossRefGoogle Scholar
  16. 16.
    J.E. Baker, R. Sriram, B.J. Miller, Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab Chip 15, 971–990 (2015).  https://doi.org/10.1039/C4LC01208ACrossRefGoogle Scholar
  17. 17.
    Y.X. Zong, J.B. Xia, Photonic band structure of two-dimensional metal/dielectric photonic crystals. J. Phys. D: Appl. Phys. 48(35), 355103 (2015). http://iopscience.iop.org/article/10.1088/0022-3727/48/35/355103/meta
  18. 18.
    A. Mendoza-Suárez, F. Villa-Villa, J.A. Gaspar-Armenta, Band structure of two-dimensional photonic crystals that include dispersive left handed materials and dielectrics in the unit cell. J. Opt. Soc. Am. B 24, 3091–3098 (2007).  https://doi.org/10.1364/JOSAB.24.003091CrossRefADSGoogle Scholar
  19. 19.
    V. Castillo-Gallardo, L.E. Puente-Díaz, H. Pérez-Aguilar, A. Mendoza-Suárez, F. Villa-Villa, Band structure of two-dimensional photonic crystals that include dispersive left-handed materials with rough surfaces in their lattice. UnpublishedGoogle Scholar
  20. 20.
    D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J.P. Vigneron, E.H. El Boudouti, A. Nougaoui, Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials. Phys. Rev. E 69, 066613 (2004).  https://doi.org/10.1103/PhysRevE.69.066613CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • V. Castillo-Gallardo
    • 1
  • L. Puente-Díaz
    • 1
  • E. Lozano-Trejo
    • 1
  • H. Pérez-Aguilar
    • 1
    Email author
  • A. Mendoza-Suárez
    • 1
  1. 1.Facultad de Ciencias Físico-Matemáticas, UMSNH. Avenida Francisco J. Múgica S/NMoreliaMexico

Personalised recommendations