Modeling and Control of a Two-Axis Solar Tracking System

  • Yves J. Pérez D.Email author
  • Ruben Garrido
  • Arturo Díaz Ponce
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 233)


The present work focuses on the analysis of a two-axis pedestal-type solar tracking system controlled by a Proportional-Integral-Derivative (PID) control law plus feedforward applied to the motors that drive the tracking system. The implementation of a solar positioning algorithm is performed to calculate the trajectories of the solar tracking system to track the movement of the sun. These trajectories are applied as desired trajectories to the PID control loops controlling the motors. Results of real-time experiments are presented, and the energy consumption of the motors is analyzed.



The authors would like to thank the support of Gerardo Castro Zavala, Jesus Meza Serrano in setting up the laboratory testbed. The first author would like to thank the support given by CONACyT and CINVESTAV-IPN. This work has been supported by CONACyT Mexico under grant 222140.


  1. 1.
    C.J. Rhodes, Solar energy: principles and possibilities. Sci. Prog. 93(1), 37–112 (2010)Google Scholar
  2. 2.
    R. Arreola Gómez, y col. Diseño, construcción y evaluación de un sistema de seguimiento solar para un panel fotovoltaico. Revista mexicana de ciencias agrícolas 6(8), 1715–1727 (2015)Google Scholar
  3. 3.
    D.M. Mosher, R.E. Boese, R.J. Soukup, The advantages of sun tracking for planar silicon solar cells. Sol. Energy 19, 91–97 (1977)Google Scholar
  4. 4.
    R. Garrido, A. Díaz, Cascade closed-loop control of solar trackers applied to HCPV systems. Renew. Energy 97, 689–696 (2016)CrossRefGoogle Scholar
  5. 5.
    J.M. Hallas, K.A. Baker, J.H. Karp, E.J. Tremblay, J.E. Ford, Two-axis solar tracking accomplished through small lateral translations. Appl. Opt. 51(25), 6117–6124 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Yao, Y. Hu, S. Gao, G. Yang, J. Du, A multipurpose dual-axis solar tracker with two tracking strategies. Renew. Energy 72, 88–98 (2014)CrossRefGoogle Scholar
  7. 7.
    B.J. Huang, F.S. Sun, Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector. Energy Convers. Manag. 48(4), 1273–1280 (2007)CrossRefGoogle Scholar
  8. 8.
    G.N. Tiwari, Solar Energy: Fundamentals, Design, Modelling and Applications. Alpha Science Int’l Ltd. (2002)Google Scholar
  9. 9.
    I. Reda, A. Andreas, Solar position algorithm for solar radiation applications. Sol. Energy 76(5), 577–589 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    M.W. Spong, Seth Hutchinson Mathukumalli Vidyasagar. Robot Nodeling and Control, vol. 3. (Wiley, New York, 2006)Google Scholar
  11. 11.
    R. Garrido, R. Miranda, Autotuning of a DC servomechanism using closed loop identification, in IEEE Industrial Electronics, IECON 2006-32nd Annual Conference on. IEEE (2006), pp. 258–263Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yves J. Pérez D.
    • 1
    Email author
  • Ruben Garrido
    • 1
  • Arturo Díaz Ponce
    • 2
  1. 1.Departamento de Control Automático, CINVESTAV-IPNSan Pedro Zacatenco, México CityMexico
  2. 2.CONACYT—Centro de Investigaciones En Óptica, A.C Unidad Aguascalientes—Prol. Constitución 607Fracc. Reserva Loma BonitaAguascalientesMexico

Personalised recommendations