Advertisement

Techniques Used in Fish and Fishery Products Analysis

  • Saleena Mathew
  • Maya Raman
  • Manjusha Kalarikkathara Parameswaran
  • Dhanya Pulikkottil Rajan
Chapter

Abstract

This chapter discusses about the various fish quality determinants and the instrumental techniques in detail. A detailed description of the conventional and modern technology is included in this chapter.

References

  1. Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15, 207–225.CrossRefGoogle Scholar
  2. Akasaki, T., Yanagimoto, T., Yamakami, K., Tomonaga, H., & Sato, S. (2006). Species identification and PCR-RFLP analysis of cytochrome b gene in cod fish (order Gadiformes) products. Journal of Food Science, 71(3), C190–C195.CrossRefGoogle Scholar
  3. Akyilmaz, E., Yorganci, E., & Asav, E. (2010). Do copper ions activate tyrosinase enzyme? A biosensor model for the solution. Bioelectrochemistry, 78, 155–160.PubMedCrossRefPubMedCentralGoogle Scholar
  4. Amit, S., Somayyeh, P., & Stephane, E. (2013). Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors, 13, 1763–1786.  https://doi.org/10.3390/s130201763.CrossRefGoogle Scholar
  5. Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 30, 512–523.PubMedCrossRefPubMedCentralGoogle Scholar
  6. AOAC. (2000). Official methods of analysis (17th ed.). Gaithersburg: AOAC International. Also valid are: a second revision of this edition (2003); the 16th edition (1995) and the 15th edition (1990). This last was published in Arlington, Virginia, USA, by AOAC International.Google Scholar
  7. AOAC International. (2007). Official methods of analysis (AOAC Method 920.39C for Cereal Fat; AOAC Method 960.39 for Meat Fat) 18th ed., 2005; Current through revision 2, 2007 (Online)., Gaithersburg: AOAC International.Google Scholar
  8. Asensio, G. L. (2007). PCR-based methods for fish and fishery products authentication. Trends in Food Science and Technology, 18, 558–566.CrossRefGoogle Scholar
  9. Asensio, L., Samaniego, L., Miguel, A. P., González, I., García, T., & Martín, R. (2008). Detection of grouper mislabelling in the fish market by an immunostick colorimetric ELISA assay. Food and Agricultural Immunology, 19(2), 141–147.  https://doi.org/10.1080/09540100802100202.CrossRefGoogle Scholar
  10. Banerjee, P., & Bhunia, A. K. (2009). Mammalian cell-based biosensors for pathogens and toxins. Trends in Biotechnology, 27, 179–188.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Bartlett, S. E., & Davidson, W. S. (1992). FINS (forensically informative nucleotide sequencing): a procedure for identifying the animal origin of biological specimens. BioTechniques, 12(3), 408–411.PubMedPubMedCentralGoogle Scholar
  12. Bhunia, A. K., Geng, T., Lathrop, A., Valadez, A., & Morgan, M. T. (2004). Optical immunosensors for detection of Listeria monocytogenes and salmonella enteritidis from food. Monitoring Food Safety, Agriculture, and Plant Health, 5271, 1–6.Google Scholar
  13. Bish, D. L., & Post, J. E. (Eds.). (1989). Modern powder diffraction (Reviews in mineralology, 20). Washington, DC: Mineralogical Society of America.Google Scholar
  14. Bjellqvist, B., Kristina, E., Giorgio, R. P., Elisabetta, G., Angelika, G., Reiner, W., & Wilhelm, P. (1982). Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. Journal of Biochemical and Biophysical Methods, 6(4), 317–339. 0165-022X.  https://doi.org/10.1016/0165-022X(82)90013-6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bjornsson, S. (1993). Size-dependant separation of proteoglycans by electrophoresis in gels of pure agarose. Analytical Biochemistry, 210, 292–298.PubMedCrossRefPubMedCentralGoogle Scholar
  16. Carrera, E., Garcia, T., Cespedes, A., Gonzalez, I., Sanz, B., Hernandez, P., & Martin, R. (1997). Immuno stick colorimetric ELISA assay for the identification of smoked salmon (Salmosalar), trout (Oncorhynchusmykiss) and bream (Bramaraii). Journal of the Science of Food and Agriculture, 74, 547–550.CrossRefGoogle Scholar
  17. Carrera, E., Terni, M., Montero, A., Garcıa, T., Gonzalez, I., & Martın, R. (2014). ELISA-based detection of mislabeled albacore (Thunnus alalunga) fresh and frozen fish fillets. Food and Agricultural Immunology, 25(4), 569–577.CrossRefGoogle Scholar
  18. Charu, D., Ishan, P., Himanshu, P., Pramod, W. R., Avinash, C. P., Shanti, B. M., & Sandip, P. (2017). Chapter 9, Electrospun nanofibrous scaffold as a potential carrier of antimicrobial therapeutics for diabetic wound healing and tissue regeneration. In A. M. Grumezescu (Ed.), Nano- and microscale drug delivery systems – Design and fabrication. Amsterdam: Elsevier.Google Scholar
  19. Cirka, H. A., Koehler, S. A., Farr, W. W., & Billiar, K. L. (2012). Eccentric rheometry for viscoelastic characterization of small, soft, anisotropic, and irregularly shaped biopolymer gels and tissue biopsies. Annals of Biomedical Engineering, 40(8), 1654–1665.  https://doi.org/10.1007/s10439-012-0532-5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Corradini, D. (2011). Handbook of HPLC (2nd ed.). Boca Raton: CRC Press.Google Scholar
  21. Cullity, B. D. (1978). Elements of X-ray diffraction (2nd ed.). Reading: Addison-Wesley.Google Scholar
  22. David, B. M., & Wayne, C. E. (2014). Fat analysis, Chapter 8. In S. S. Nielsen (Ed.), Food analysis laboratory manual (Food science texts series) (4th ed.). Boston: Springer.Google Scholar
  23. Eby, G. N. (2004). Principles of environmental geochemistry (pp. 212–214). Pacific Grove: Brooks/Cole-Thomson Learning.Google Scholar
  24. Eric, S., Julia, A. D., & Reta, N. (2008). Chapter 8 – Gas chromatography and gas chromatography – Mass spectrometry. In Fire debris analysis (pp. 235–293). London: Elsevier. isbn:978-0-12-663971-1 (For GCdiagram).Google Scholar
  25. Fernandez, B., Lobo, L., & Pereiro, R. (2019). Atomic absorption spectrometry – Fundamentals, instrumentation and capabilities. In Encyclopedia of analytical science (Reference module in chemistry, molecular sciences and chemical engineering) (3rd ed., pp. 137–143). Amsterdam: Elsevier.Google Scholar
  26. Hayat, M. (2000). Principles and techniques of electron microscopy, biological applications (4th ed.). Cambridge: Cambridge University Press.Google Scholar
  27. Heineman, W. R., & Jensen, W. B. (2006). Leland C. Clark Jr. (1918–2005). Biosensors & Bioelectronics, 21, 1403–1404.CrossRefGoogle Scholar
  28. Hussain, M., Wackerlig, J., & Lieberzeit, P. A. (2013). Biomimetic strategies for sensing biological species. Biosensors, 3, 89–107.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Jena, S., Tokas, R., Thakur, S., & Sahoo, N. K. (2015). Characterization of optical thin films by spectrophotometry and atomic force microscopy. SMC Bulletin, 6(1), 1–9.Google Scholar
  30. Jones, D. B. (1941). Factors for converting percentages of nitrogen in foods and feeds into percentages of proteins (Circular No. 183). Washington, DC: United States Department of Agriculture.Google Scholar
  31. Josep, S. E., Ingrid, M. Y., Alessandra, B., & Pier, R. (1996). Fish species identification by isoelectric focusing of parvalbumins in immobilized pH gradients. Electrophoresis, 17, 1380–1385.  https://doi.org/10.1002/elps.1150170817.CrossRefGoogle Scholar
  32. Karousou, E. G., Viola, M., Genasetti, A., Vigetti, D., De Luca, G., Karamanos, N. K., & Passi, A. (2005). Application of polyacrylamide gel electrophoresis of fluorophore-labeled saccharides for analysis of hyaluronan and chondroitin sulfate in human and animal tissues and cell cultures. Biomedical Chromatography, 19(761–765), 21.Google Scholar
  33. Kjeldahl, J. (1883). Neue Methodezur Bestimmung des Stickstoffs in organischen Körpern [New method for the determination of nitrogen in organic substances]. Zeitschriftfüranalytische Chemie, 22(1), 366–383.Google Scholar
  34. Klug, H. P., & Alexander, L. E. (1974). X-ray diffraction procedures for polycrystalline and amorphous materials (2nd ed.). New York: Wiley.Google Scholar
  35. Lawler, D. M. (2016). Turbidity, turbidimetry, and nephelometry. In Encyclopedia of analytical science (3rd ed., pp. 152–163). Kent: Elsevier.Google Scholar
  36. Lehotay, S., & Hajslova, J. (2002). Application of gas chromatography in food analysis. Trends in Analytical Chemistry, 21(9–10), 686–697.CrossRefGoogle Scholar
  37. Liebson, S. H. (1947). The discharge mechanism of self-quenching Geiger–Mueller counters. Physical Review, 72(7), 602–608.CrossRefGoogle Scholar
  38. Liliana, S. C., Ana María, Z. A., & Alfredo, A. A. (2009). Use of enzymatic biosensors as quality indices: A synopsis of present and future trends in the food industry. Chilean Journal of Agricultural Research, 69(2), 270–282.Google Scholar
  39. Luca, R., René, S., Susana, R. S., Chantal, M., Vincenzo, G., & Frédérique, J. (2012). Instrumental texture analysis parameters as markers of table-grape and winegrape quality: A review. American Journal of Enology and Viticulture, 63(1), 11–28.CrossRefGoogle Scholar
  40. Macosko, C. W. (1994). Rheology – Principles, measurements and applications. New York: Wiley-VCH.Google Scholar
  41. Magdalena, M., & Edward, P. (2007). Species identification of meat by electrophoretic methods. Acta Scientiarum Polonorum, Technologia Alimentaria, 6(1), 5–16.Google Scholar
  42. Marta, J., Iva, M., Joanna, N., & Katarzyna, S. (2019). Recent applications of bacteriophage-based electrodes: A mini-review. Electrochemistry Communications, 99, 11–19.CrossRefGoogle Scholar
  43. Mecke, A., Dittrich, C., & Meier, W. (2006). Biomimetic membranes designed from amphiphilic block copolymers. Soft Matter, 2, 751–759.CrossRefGoogle Scholar
  44. Mezger, T. (2011). The Rheology Handbook (3rd Rev. ed., , pp. 324–334). Hanover: Vincentz Network.Google Scholar
  45. Michael, T. (2008). AMC technical briefs in Analytical Methods Committee AMCTB, 29, issn:1757-5958.Google Scholar
  46. Michael, L. S., Gene, A. S., Neil, C. S., & Gregg, A. N. (1991). New evidence on the hydrothermal system in Long Valley caldera, California, from wells, fluid sampling, electrical geophysics, and age determinations of hot-spring deposits. Journal of Volcanology and Geothermal Research, 48(3–4), 229–263.Google Scholar
  47. Militsopoulou, M., Lamari, F., & Karamanos, N. K. (2003). Capillary electrophoresis: A tool for studying interactions of glycans/proteoglycans with growth factors. Journal of Pharmaceutical and Biomedical Analysis, 32, 823–828.PubMedCrossRefPubMedCentralGoogle Scholar
  48. Minunni, M. (2003). Biosensors based on nucleic acid interaction. Spectroscopy, 17, 613–625.CrossRefGoogle Scholar
  49. Moore, D. M., & Reynolds, R. C., Jr. (1997). X-ray diffraction and the identification and analysis of clay minerals (2nd ed.). New York: Oxford University Press.Google Scholar
  50. Moretti, V. M., Turchini, G. M., Bellagamba, F., & Caprino, F. (2003). Traceability issues in fishery and aquaculture products. Veterinary Research Communications, 27(1), 497–505.PubMedCrossRefPubMedCentralGoogle Scholar
  51. Mostovenko, E., Hassan, C., Rattke, J., Deelder, A. M., van Veelen, P. A., & Palmblad, M. (2013). Comparison of peptide and protein fractionation methods in proteomics. EuPA Open Proteomics, 1, 30–37.CrossRefGoogle Scholar
  52. Naik, K. M., Srinivas, D., Sasi, B., & Basha, S. K. J. (2017). Biosensors in food processing – A review. International Journal of Pure & Applied Bioscience, 5(4), 1219–1227.  https://doi.org/10.18782/2320-7051.5546.CrossRefGoogle Scholar
  53. Nikhil, B., Pawan, J., Nello, F., & Pedro, E. (2016). Introduction to biosensors. Essays in Biochemistry, 60, 1–8.  https://doi.org/10.1042/EBC20150001.CrossRefGoogle Scholar
  54. Nordberg, G. F., Fowler, B. A., & Nordberg, M. (2015). Handbook on the toxicology of metals (4th ed.). Amsterdam: Elsevier.Google Scholar
  55. Parikha, M. (2016). Biosensors and their applications – A review. Journal of Oral Biology and Craniofacial Research, 6, 153–159.CrossRefGoogle Scholar
  56. Pavao, M. S. G., Mourao, P. A. S., Mulloy, B., & Tollefsen, D. M. (1995). A unique dermatan sulfate like glycosaminoglycans from ascidian: Its structure and the effect of its unusual sulfation pattern on anticoagulant activity. The Journal of Biological Chemistry, 270, 31027–31036.PubMedCrossRefPubMedCentralGoogle Scholar
  57. Putnis, A. (1992). Introduction to mineral sciences (Chapter 3, pp. 41–80). Cambridge: Cambridge University Press.Google Scholar
  58. Rechnitz, G. A. (1978). Biochemical electrodes uses tissues slice. Chemical and Engineering News, 56, 16–21.Google Scholar
  59. Reich, E., & Schibli, A. (2007). High-performance thin-layer chromatography for the analysis of medicinal plants (Illustrated ed.). New York: Thieme. isbn:978-3-13-141601-8.Google Scholar
  60. Romero, G., Díaz, J. R., Sabater, J. M., & Perez, C. (2012). Evaluation of commercial probes for on-line electrical conductivity measurements during goat gland milking process. Sensors, 12(4), 4493–4513.  https://doi.org/10.3390/s120404493.CrossRefPubMedGoogle Scholar
  61. Rosalee, S. R., & Morrissey, T. M. (2008). DNA-based methods for the identification of commercial fish and seafood species. Comprehensive Reviews in Food Science and Food Safety, 7, 280–295.CrossRefGoogle Scholar
  62. Rutherford, E., & Geiger, H. (1908). An electrical method of counting the number of α particles from radioactive substances. Proceedings of the Royal Society (London), Series A, 81(546), 141–161.CrossRefGoogle Scholar
  63. Senturk, E., Aktop, S., Sanlibaba, P., & Tezel, B. U. (2018). Biosensors: A novel approach to detect food-borne pathogens. Applied Microbiology, 4, 151.  https://doi.org/10.4172/2471-9315.1000151.CrossRefGoogle Scholar
  64. Steinke, D., & Hanner, R. (2011). The FISH-BOL collaborators’ protocol. Mitochondrial DNA, 22, 10–14.PubMedCrossRefPubMedCentralGoogle Scholar
  65. Szczesniak, A. S. (2002). Texture is a sensory property. Food Quality and Preference, 13, 215–225.CrossRefGoogle Scholar
  66. Tavakoli, J., & Tang, Y. (2017). Hydrogel based sensors for biomedical applications: An updated review. Polymers, 9(8), 364.  https://doi.org/10.3390/polym9080364.CrossRefPubMedCentralGoogle Scholar
  67. Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (1999). Electrochemical biosensors: Recommended definitions and classification. Pure and Applied Chemistry, 71, 2333–2348.CrossRefGoogle Scholar
  68. Thevenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. (2001). Electrochemical biosensors: Recommended definitions and classification. Biosensors & Bioelectronics, 16, 121–131.CrossRefGoogle Scholar
  69. Torun, O., Boyaci, I., Temur, E., & Tamer, U. (2012). Comparison of sensing strategies in SPR biosensor for rapid and sensitive enumeration of bacteria. Biosensors & Bioelectronics, 37, 53–60.CrossRefGoogle Scholar
  70. Venugopal, V. (2002). Biosensors in fish production and quality control. Biosensors & Bioelectronics, 17, 147–157.CrossRefGoogle Scholar
  71. Vijayalakshmi, V., Khalil, A., Olga, K., Kamila, O., & Catherine, A. (2010). An overview of food borne pathogen detection: In the perspective of biosensors. Biotechnology Advances, 28, 232–254.CrossRefGoogle Scholar
  72. Vogel, A. I., Tatchell, A. R., Furnis, B. S., Hannaford, A. J., & Smith, P. W. G. (1989). Vogel’s textbook of practical organic chemistry (5th ed.). Harlow: Longman. isbn:978-0-582-46236-6.Google Scholar
  73. Volpi, N., & Maccari, F. (2002). Detection of submicrogram quantities of glycosaminoglycans on agarose gels by sequential staining with toluidine blue and stains-all. Electrophoresis, 23, 4060–4066.PubMedCrossRefPubMedCentralGoogle Scholar
  74. Wang, J. (1998). DNA biosensors based on peptide nucleic acid (PNA) recognition layers. A review. Biosensors and Bioelectronics, 13, 757–762. 11.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Wang, J. (2008). Electrochemical glucose biosensors. Chemical Reviews, 108, 814–825.PubMedCrossRefPubMedCentralGoogle Scholar
  76. Wang, L., & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology, 17(6), 300–312.CrossRefGoogle Scholar
  77. Ward, R. D., Hanner, R., & Hebert, P. D. N. (2009). The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology, 74, 329–356.PubMedCrossRefPubMedCentralGoogle Scholar
  78. Wilson, K., & Walker, J. (2010). Principles and techniques of biochemistry and molecular biology (7th ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  79. Wittebole, X., De Roock, S., & Opal, S. M. (2014). A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence, 5, 226–235.  https://doi.org/10.4161/viru.25991.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Woolfe, M., & Primrose, S. (2004). Food forensics: Using DNA technology to combat misdescription and fraud. Trends in Biotechnology, 22(5), 222–226.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Saleena Mathew
    • 1
  • Maya Raman
    • 2
  • Manjusha Kalarikkathara Parameswaran
    • 1
  • Dhanya Pulikkottil Rajan
    • 3
  1. 1.School of Industrial FisheriesCochin University of Science and TechnologyKochiIndia
  2. 2.Department of Food Science and Technology, School of Ocean Science and TechnologyKerala University of Fisheries and Ocean StudiesKochiIndia
  3. 3.Department of AquacultureM.E.S Asmabi CollegeKochiIndia

Personalised recommendations