Advertisement

Geographical Distribution of Rhizobia

  • Wen Feng ChenEmail author
Chapter

Abstract

Distribution and geography of rhizobia is affected not only by the geographic origin but also by the host plants. In this chapter, biogeography of rhizobia associated with soybean, Caragana, Astragalus, faba bean, peanut, Sophora, Phaseolus vulgaris and alfalfa are discussed in details. Clearly, in some places, only specific rhizobia are found to nodulate specific legume.

References

  1. Aguilar OM, Riva O, Peltzer E. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci U S A. 2004;101:13548–53.CrossRefGoogle Scholar
  2. Allen ON, Allen EK. The Leguminosae: a source book of characteristics, uses, and nodulation. London: University of Wisconsin Press, Macmillan; 1981.CrossRefGoogle Scholar
  3. Amarger N. Rhizobia in the field. In: Advances in agronomy, vol. 73. Amsterdam: Academic; 2001. p. 109–68.  https://doi.org/10.1016/S0065-2113(01)73006-4.CrossRefGoogle Scholar
  4. Amarger N, Bours M, Revoy F, Allard MR, Laguerre G. Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant Soil. 1994;161(2):147–56.  https://doi.org/10.1007/BF00046386.CrossRefGoogle Scholar
  5. Amarger N, Macheret V, Laguerre G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol. 1997;47(4):996–1006.  https://doi.org/10.1099/00207713-47-4-996.CrossRefPubMedGoogle Scholar
  6. Ampomah OY, Mousavi SA, Lindstrom K, Huss-Danell K. Diverse Mesorhizobium bacteria nodulate native Astragalus and Oxytropis in arctic and subarctic areas in Eurasia. Syst Appl Microbiol. 2017;40(1):51–8.  https://doi.org/10.1016/j.syapm.2016.11.004.CrossRefPubMedGoogle Scholar
  7. Belhadi D, de Lajudie P, Ramdani N, Le Roux C, Boulila F, Tisseyre P, Boulila A, Benguedouar A, Kaci Y, Laguerre G. Vicia faba L. in the Bejaia region of Algeria is nodulated by Rhizobium leguminosarum sv. viciae, Rhizobium laguerreae and two new genospecies. Syst Appl Microbiol. 2018;41(2):122–30.  https://doi.org/10.1016/j.syapm.2017.10.004.CrossRefPubMedGoogle Scholar
  8. Cao Y, Wang E-T, Zhao L, Chen W-M, Wei G-H. Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol Biochem. 2014;78:128–37.  https://doi.org/10.1016/j.soilbio.2014.07.026.CrossRefGoogle Scholar
  9. Chang YL, Wang JY, Wang ET, Liu HC, Sui XH, Chen WX. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol. 2011;61(10):2496–502.  https://doi.org/10.1099/ijs.0.027110-0.CrossRefPubMedGoogle Scholar
  10. Chen WX, Yan GH, Li JL. Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol. 1988;38(4):392–7.  https://doi.org/10.1099/00207713-38-4-392.CrossRefGoogle Scholar
  11. Chen WX, Li GS, Qi YL, Wang ET, Yuan HL, Li JL. Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. Int J Syst Bacteriol. 1991;41(2):275–80.  https://doi.org/10.1099/00207713-41-2-275.CrossRefGoogle Scholar
  12. Chen WX, Wang E, Wang SY, Li YB, Chen XQ, Li YB. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol. 1995;45(1):153–9.  https://doi.org/10.1099/00207713-45-1-153.CrossRefPubMedGoogle Scholar
  13. Chen WF, Guan SH, Zhao CT, Yan XR, Man CX, Wang ET, Chen WX. Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges. FEMS Microbiol Lett. 2008;283(2):203–9.  https://doi.org/10.1111/j.1574-6968.2008.01167.x.CrossRefPubMedGoogle Scholar
  14. Chen WX, Wang ET, Chen WF, Tian CF. Chinese rhizobia. Beijing: Science Press; 2011.Google Scholar
  15. Chen WH, Yang SH, Li ZH, Zhang XX, Sui XH, Wang ET, Chen WX, Chen WF. Ensifer shofinae sp. nov., a novel rhizobial species isolated from root nodules of soybean (Glycine max). Syst Appl Microbiol. 2017;40(3):144–9.  https://doi.org/10.1016/j.syapm.2017.01.002.CrossRefPubMedGoogle Scholar
  16. Chen YX, Zou L, Penttinen P, Chen Q, Li QQ, Wang CQ, Xu KW. Faba Bean (Vicia faba L.) nodulating rhizobia in Panxi, China, are diverse at species, plant growth promoting ability, and symbiosis related gene levels. Front Microbiol. 2018;9:1338.  https://doi.org/10.3389/fmicb.2018.01338.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Dai J, Liu X, Wang Y. Genetic diversity and phylogeny of rhizobia isolated from Caragana microphylla growing in desert soil in Ningxia, China. Genet Mol Res. 2012;11(3):2683–93.  https://doi.org/10.4238/2012.June.25.5.CrossRefPubMedGoogle Scholar
  18. Dall’Agnol RF, Ribeiro RA, Delamuta JRM, Ormeno-Orrillo E, Rogel MA, Andrade DS, Martinez-Romero E, Hungria M. Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol. 2014;64:3222–9.  https://doi.org/10.1099/ijs.0.064543-0.CrossRefPubMedGoogle Scholar
  19. Doyle JJ, Doyle JL, Ballenger JA, Palmer JD. The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family leguminosae. Mol Phylogenet Evol. 1996;5(2):429–38.CrossRefGoogle Scholar
  20. Duc G, Bao SY, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong XX. Diversity maintenance and use of Vicia faba L. genetic resources. Field Crop Res. 2010;115(3):270–8.  https://doi.org/10.1016/j.fcr.2008.10.003.CrossRefGoogle Scholar
  21. Eardly B, S Wang F, S Whittam T, K Selander R. Species limits in Rhizobium populations that nodulate the common bean (Phaseolus vulgaris). Appl Environ Microbiol. 1995;61:507–12.PubMedPubMedCentralGoogle Scholar
  22. El-Akhal MR, Rincon A, Mourabit NE, Pueyo JJ, Barrijal S. Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (Arachis hypogaea L.) grown in Moroccan soils. J Basic Microbiol. 2009;49(5):415–25.  https://doi.org/10.1002/jobm.200800359.CrossRefPubMedGoogle Scholar
  23. Fan SY, Freedman B, Gao JX. Potential environmental benefits from increased use of bioenergy in China. Environ Manag. 2007;40:504–15.CrossRefGoogle Scholar
  24. Flores-Félix JD, Carro L, Velázquez E, Valverde A, Cerda-Castillo E, Garcia-Fraile P, Rivas R. Phyllobacterium endophyticum sp. nov. isolated from nodules of Phaseolus vulgaris in Northern Spain. Int J Syst Evol Microbiol. 2012;63:821–6.  https://doi.org/10.1099/ijs.0.038497-0.CrossRefPubMedGoogle Scholar
  25. Gandhi KN, Vincent MA, Reveal JL. Dermatophyllum, the correct name for Calia (Fabaceae). Phyton. 2011;57:1–4.Google Scholar
  26. Gao J, Terefework Z, Chen W, Lindstrom K. Genetic diversity of rhizobia isolated from Astragalus adsurgens growing in different geographical regions of China. J Biotechnol. 2001;91(2–3):155–68.  https://doi.org/10.1016/S0168-1656(01)00337-6.CrossRefPubMedGoogle Scholar
  27. Gao LF, Hu ZA, Wang HX. Genetic diversity of rhizobia isolated from Caragana intermedia in Maowusu sandland, north of China. Lett Appl Microbiol. 2002;35(4):347–52.CrossRefGoogle Scholar
  28. Gao JL, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JPW, Lindström K. Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol. 2004;54(6):2003–12.  https://doi.org/10.1099/ijs.0.02840-0.CrossRefPubMedGoogle Scholar
  29. García-Fraile P, Mulas-García D, Peix A, Rivas R, González-Andrés F, Velázquez E. Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol. 2010;56:657–66.CrossRefGoogle Scholar
  30. Gepts P. Biochemical evidence bearing on the domestication of Phaseolus (Fabaceae) beans. Econ Bot. 1990;44(3):28–38.  https://doi.org/10.1007/BF02860473.CrossRefGoogle Scholar
  31. Gepts P, Bliss FA. Dissemination pathways of common bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. 2. Europe and Africa. Econ Bot. 1988;42(1):86–104.  https://doi.org/10.1007/bf02859038.CrossRefGoogle Scholar
  32. Gnat S, Małek W, Oleńska E, Wdowiak-Wróbel S, Kalita M, Łotocka B, Wójcik M. Phylogeny of symbiotic genes and the symbiotic properties of rhizobia specific to Astragalus glycyphyllos L. PLoS One. 2015;10(10):e0141504.  https://doi.org/10.1371/journal.pone.0141504.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gnat S, Malek W, Olenska E, Wdowiak-Wrobel S, Kalita M, Rogalski J, Wojcik M. Multilocus sequence analysis supports the taxonomic position of Astragalus glycyphyllos symbionts based on DNA-DNA hybridization. Int J Syst Evol Microbiol. 2016;66:1906–12.  https://doi.org/10.1099/ijsem.0.000862.CrossRefPubMedGoogle Scholar
  34. Gu CT, Wang ET, Sui XH, Chen WF, Chen WX. Diversity and geographical distribution of rhizobia associated with Lespedeza spp. in temperate and subtropical regions of China. Arch Microbiol. 2007;188(4):355–65.  https://doi.org/10.1007/s00203-007-0256-3.CrossRefPubMedGoogle Scholar
  35. Guan SH, Chen WF, Wang ET, Lu YL, Yan XR, Zhang XX, Chen WX. Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol. 2008;58(Pt 11):2646–53.  https://doi.org/10.1099/ijs.0.65829-0.CrossRefPubMedGoogle Scholar
  36. Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX. Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang. China Syst Appl Microbiol. 2008a;31:287–301.CrossRefGoogle Scholar
  37. Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Chen WX. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol. 2008b;58:1693–9.CrossRefGoogle Scholar
  38. Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol. 2008c;58(Pt 7):1693–9.  https://doi.org/10.1099/ijs.0.65568-0.CrossRefPubMedGoogle Scholar
  39. Jaiswal SK, Msimbira LA, Dakora FD. Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Syst Appl Microbiol. 2017;40(4):215–26.  https://doi.org/10.1016/j.syapm.2017.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jarvis BDW, VanBerkum P, Chen WX, Nour SM, Fernandez MP, CleyetMarel JC, Gillis M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol. 1997;47(3):895–8.  https://doi.org/10.1099/00207713-47-3-895.CrossRefGoogle Scholar
  41. Ji Z, Yan H, Cui Q, Wang E, Chen W, Chen W. Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana. Syst Appl Microbiol. 2015;38(3):176–83.  https://doi.org/10.1016/j.syapm.2015.02.007.CrossRefPubMedGoogle Scholar
  42. Ji ZJ, Yan H, Cui QG, Wang ET, Chen WF, Chen WX. Competition between rhizobia under different environmental conditions affects the nodulation of a legume. Syst Appl Microbiol. 2017;40(2):114–9.  https://doi.org/10.1016/j.syapm.2016.12.003.CrossRefPubMedGoogle Scholar
  43. Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF. Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant-Microbe Interact. 2015a;28(12):1338–52.  https://doi.org/10.1094/mpmi-06-15-0141-r.CrossRefPubMedGoogle Scholar
  44. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Wang ET, Guo BL, Chen WX, Chen WF. Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int J Syst Evol Microbiol. 2015b;65(2):497–503.  https://doi.org/10.1099/ijs.0.068916-0.CrossRefPubMedGoogle Scholar
  45. Judicial Commission of the International Committee on Systematics of Prokaryotes. The genus name Sinorhizobium Chen et al. 1988 is a later synonym of Ensifer Casida 1982 and is not conserved over the latter genus name, and the species name ‘Sinorhizobium adhaerens’ is not validly published. Opinion 84. Int J Syst Evol Microbiol. 2008;58(8):1973.  https://doi.org/10.1099/ijs.0.2008/005991-0.CrossRefGoogle Scholar
  46. Laguerre G, Fernandez MP, Edel V, Normand P, Amarger N. Genomic heterogeneity among French Rhizobium strains isolated from Phaseolus vulgaris L. Int J Syst Bacteriol. 1993;43(4):761–7.  https://doi.org/10.1099/00207713-43-4-761.CrossRefPubMedGoogle Scholar
  47. Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res. 2014;169(1):2–17.  https://doi.org/10.1016/j.micres.2013.09.012.CrossRefPubMedGoogle Scholar
  48. Li Q, Zhang X, Zou L, Chen Q, Fewer DP, Lindstrom K. Horizontal gene transfer and recombination shape mesorhizobial populations in the gene center of the host plants Astragalus luteolus and Astragalus ernestii in Sichuan, China. FEMS Microbiol Ecol. 2009;70(2):71–9.  https://doi.org/10.1111/j.1574-6941.2009.00776.x.CrossRefPubMedGoogle Scholar
  49. Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX. Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol. 2011;61(8):1981–8.  https://doi.org/10.1099/ijs.0.025049-0.CrossRefPubMedGoogle Scholar
  50. Li M, Li Y, Chen WF, Sui XH, Li Y Jr, Li Y, Wang ET, Chen WX. Genetic diversity, community structure and distribution of rhizobia in the root nodules of Caragana spp. from arid and semi-arid alkaline deserts, in the north of China. Syst Appl Microbiol. 2012;35(4):239–45.  https://doi.org/10.1016/j.syapm.2012.02.004.CrossRefPubMedGoogle Scholar
  51. Li YH, Wang R, Zhang XX, Young JPW, Wang ET, Sui XH, Chen WX. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol. 2015;65(12):4655–61.  https://doi.org/10.1099/ijsem.0.000629.CrossRefPubMedGoogle Scholar
  52. Liston A, Wheeler JA. The phylogenetic position of the genus Astragalus (Fabaceae): evidence from the chloroplast genes rpoC1 and rpoC2. Biochem Syst Ecol. 1994;22(4):377–88.CrossRefGoogle Scholar
  53. Liu YH, Jiao YS, Liu LX, Wang D, Tian CF, Wang ET, Wang L, Chen WX, Wu SY, Guo BL, Guan ZG, Poinsot V, Chen WF. Nonspecific symbiosis between Sophora flavescens and different rhizobia. Mol Plant-Microbe Interact. 2018;31(2):224–32.  https://doi.org/10.1094/mpmi-05-17-0117-r.CrossRefPubMedGoogle Scholar
  54. Lu YL, Chen WF, Han LL, Wang ET, Chen WX. Rhizobium alkalisoli sp. nov., isolated from Caragana intermedia growing in saline-alkaline soils in the north of China. Int J Syst Evol Microbiol. 2009a;59(Pt 12):3006–11.  https://doi.org/10.1099/ijs.0.007237-0.CrossRefGoogle Scholar
  55. Lu YL, Chen WF, Wang ET, Guan SH, Yan XR, Chen WX. Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst Appl Microbiol. 2009b;32(5):351–61.  https://doi.org/10.1016/j.syapm.2008.10.004.CrossRefPubMedGoogle Scholar
  56. Lu YL, Chen WF, Wang ET, Han LL, Zhang XX, Chen WX, Han SZ. Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. Int J Syst Evol Microbiol. 2009c;59(Pt 12):3012–8.  https://doi.org/10.1099/ijs.0.007393-0.CrossRefPubMedGoogle Scholar
  57. Mahdhi M, Houidheg N, Mahmoudi N, Msaadek A, Rejili M, Mars M. Characterization of rhizobial bacteria nodulating Astragalus corrugatus and Hippocrepis areolata in Tunisian arid soils. Pol J Microbiol. 2016;65(3):331–9.  https://doi.org/10.5604/17331331.1215612.CrossRefPubMedGoogle Scholar
  58. Mantelin S, Saux MF, Zakhia F, Bena G, Bonneau S, Jeder H, de Lajudie P, Cleyet-Marel JC. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol. 2006;56(Pt 4):827–39.  https://doi.org/10.1099/ijs.0.63911-0.CrossRefPubMedGoogle Scholar
  59. Martinez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol. 1991;41(3):417–26.CrossRefGoogle Scholar
  60. Mhamdi R, Jebara M, Aouani ME, Ghrir R, Mars M. Genotypic diversity and symbiotic effectiveness of rhizobia isolated from root nodules of Phaseolus vulgaris L. grown in Tunisian soils. Biol Fertil Soils. 1999;28(3):313–20.  https://doi.org/10.1007/s003740050499.CrossRefGoogle Scholar
  61. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K. Phylogeny of the RhizobiumAllorhizobiumAgrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol. 2014;37(3):208–15.  https://doi.org/10.1016/j.syapm.2013.12.007.CrossRefPubMedGoogle Scholar
  62. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol. 2015;38(2):84–90.  https://doi.org/10.1016/j.syapm.2014.12.003.CrossRefPubMedGoogle Scholar
  63. Mulas D, García-Fraile P, Carro L, Ramírez-Bahena MH, Casquero P, Velázquez E, González-Andrés F. Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem. 2011;43:2283–93.CrossRefGoogle Scholar
  64. Muñoz V, Ibañez F, Tonelli ML, Valetti L, Anzuay MS, Fabra A. Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina. Syst Appl Microbiol. 2011;34(6):446–52.  https://doi.org/10.1016/j.syapm.2011.04.007.CrossRefPubMedGoogle Scholar
  65. Mutch LA, Young JP. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol. 2004;13(8):2435–44.  https://doi.org/10.1111/j.1365-294X.2004.02259.x.CrossRefPubMedGoogle Scholar
  66. Mwenda GM, O’Hara GW, De Meyer SE, Howieson JG, Terpolilli JJ. Genetic diversity and symbiotic effectiveness of Phaseolus vulgaris-nodulating rhizobia in Kenya. Syst Appl Microbiol. 2018;41(4):291–9.  https://doi.org/10.1016/j.syapm.2018.02.001.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Nguyen TD, Heenan PB, De Meyer SE, James TK, Chen WM, Morton JD, Andrews M. Genetic diversity and nitrogen fixation of mesorhizobia symbionts of New Zealand endemic Sophora species. N Z J Bot. 2017;55(4):466–78.  https://doi.org/10.1080/0028825x.2017.1376689.CrossRefGoogle Scholar
  68. Nour SM, Fernandez MP, Normand P, Cleyet-Marel JC. Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol. 1994;44(3):511–22.  https://doi.org/10.1099/00207713-44-3-511.CrossRefPubMedGoogle Scholar
  69. Nour SM, Cleyet-Marel JC, Normand P, Fernandez MP. Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol. 1995;45(4):640–8.  https://doi.org/10.1099/00207713-45-4-640.CrossRefPubMedGoogle Scholar
  70. Ormeño-Orrillo E, Aguilar-Cuba Y, ZúñigaDávila D. Draft genome sequence of Rhizobium sophoriradicis H4, a nitrogen-fixing bacterium associated with the leguminous plant Phaseolus vulgaris on the coast of Peru. Genome Announc. 2018;6(21):e00241–18.CrossRefGoogle Scholar
  71. Osei O, Abaidoo RC, Ahiabor BDK, Boddey RM, Rouws LFM. Bacteria related to Bradyrhizobium yuanmingense from Ghana are effective groundnut micro-symbionts. Appl Soil Ecol. 2018;127:41–50.  https://doi.org/10.1016/j.apsoil.2018.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol. 2008;58(11):2484–90.  https://doi.org/10.1099/ijs.0.65621-0.CrossRefPubMedGoogle Scholar
  73. Ranjbar MA, Karamian R. Caraganeae, a new tribe with notes on the genus Chesneya Lindl. ex Endel. (Fabaceae) from Flora of Iran. Thaiszia J Bot. 2003;13:67–75.Google Scholar
  74. Ren DW, Wang ET, Chen WF, Sui XH, Zhang XX, Liu HC, Chen WX. Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int J Syst Evol Microbiol. 2011;61(Pt 8):1912–20.  https://doi.org/10.1099/ijs.0.024943-0.CrossRefGoogle Scholar
  75. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL, Martínez-Romero E, Hungria M. Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol. 2012;62(5):1179–84.  https://doi.org/10.1099/ijs.0.032912-0.CrossRefPubMedGoogle Scholar
  76. Rodriguez-Navarro DN, Buendia AM, Camacho M, Lucas MM, Santamaria C. Characterization of Rhizobium spp. bean isolates from South-West Spain. Soil Biol Biochem. 2000;32(11):1601–13.  https://doi.org/10.1016/S0038-0717(00)00074-2.CrossRefGoogle Scholar
  77. Saïdi S, Ramírez-Bahena M-H, Santillana N, Zúñiga D, Álvarez-Martínez E, Peix A, Mhamdi R, Velázquez E. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol. 2014;64(1):242–7.  https://doi.org/10.1099/ijs.0.052191-0.CrossRefPubMedGoogle Scholar
  78. Sessitsch A, Hardarson G, Akkermans ADL, De Vos WM. Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Austrian soil. Mol Ecol. 1997;6(7):601–8.  https://doi.org/10.1046/j.1365-294X.1997.00223.x.CrossRefGoogle Scholar
  79. Silva C, Vinuesa P, Eguiarte LE, Martínez-Romero E, Souza V. Rhizobium etli and Rhizobium gallicum nodulate common bean (Phaseolus vulgaris) in a traditionally managed milpa plot in Mexico: population genetics and biogeographic implications. J Appl Environ Microbiol. 2003;69(2):884–93.  https://doi.org/10.1128/AEM.69.2.884-893.2003.CrossRefGoogle Scholar
  80. Sprent JI. Legume nodulation: a global perspective. Singapore: Wiley-Blackwell; 2009.CrossRefGoogle Scholar
  81. Su YZ, Zhang TH, Li YL, Wang F. Changes in soil properties after establishment of Artemisia halodendron and Caragana microphylla on shifting sand dunes in semiarid Horqin sandy land, northern China. Environ Manag. 2005;36:272–81.CrossRefGoogle Scholar
  82. Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX. Rhizobium yanglingense sp. nov., isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol. 2001;51(3):909–14.  https://doi.org/10.1099/00207713-51-3-909.CrossRefPubMedGoogle Scholar
  83. Tan HW, Heenan PB, De Meyer SE, Willems A, Andrews M. Diverse novel mesorhizobia nodulate New Zealand native Sophora species. Syst Appl Microbiol. 2015;38(2):91–8.  https://doi.org/10.1016/j.syapm.2014.11.003.CrossRefPubMedGoogle Scholar
  84. Taurian T, Ibañez F, Fabra A, Aguilar OM. Genetic diversity of rhizobia nodulating Arachis hypogaea L. in central Argentinean soils. Plant Soil. 2006;282(1):41–52.  https://doi.org/10.1007/s11104-005-5314-5.CrossRefGoogle Scholar
  85. Tejerizo TG, Rogel MA, Ormeño-Orrillo E, Althabegoiti MJ, Nilsson JF, Niehaus K, Schlüter A, Pühler A, Del Papa MF, Lagares A, Martínez-Romero E, Pistorio M. Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L.). Int J Syst Evol Microbiol. 2016;66(11):4451–7.  https://doi.org/10.1099/ijsem.0.001373.CrossRefGoogle Scholar
  86. Tian CF, Wang ET, Wu LJ, Han TX, Chen WF, Gu CT, Gu JG, Chen WX. Rhizobium fabae sp. nov., a bacterium that nodulates Vicia faba. Int J Syst Evol Microbiol. 2008;58(Pt 12):2871–5.  https://doi.org/10.1099/ijs.0.2008/000703-0.CrossRefPubMedGoogle Scholar
  87. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR, Chen WX. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci U S A. 2012;109(22):8629–34.  https://doi.org/10.1073/pnas.1120436109.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Toma MA, de Carvalho TS, Guimaraes AA, da Costa EM, da Silva JS, de Souza Moreira FM. Tripartite symbiosis of Sophora tomentosa, rhizobia and arbuscular mycorrhizal fungi. Braz J Microbiol. 2017;48(4):680–8.  https://doi.org/10.1016/j.bjm.2017.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  89. Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol. 2006;56:2631–7.CrossRefGoogle Scholar
  90. van Berkum P, Beyene D, Bao G, Campbell TA, Eardly BD. Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. Int J Syst Bacteriol. 1998;48(1):13–22.  https://doi.org/10.1099/00207713-48-1-13.CrossRefPubMedGoogle Scholar
  91. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martinez-Romero E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol. 1999;49(Pt 1):51–65.  https://doi.org/10.1099/00207713-49-1-51.CrossRefPubMedGoogle Scholar
  92. Wang ET, Rogel MA, Sui XH, Chen WX, Martinez-Romero E, van Berkum P. Mesorhizobium amorphae, a rhizobial species that nodulates Amorpha fruticosa, is native to American soils. Arch Microbiol. 2002;178(4):301–5.  https://doi.org/10.1007/s00203-002-0448-9.CrossRefPubMedGoogle Scholar
  93. Wang F, Wang ET, Wu LJ, Sui XH, Li Y, Chen WX. Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol. 2011;61(11):2582–8.  https://doi.org/10.1099/ijs.0.026484-0.CrossRefPubMedGoogle Scholar
  94. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX, Sui XH, Wang ET, Hu JQ, Zhang LY, Chen WX. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol. 2013;36(2):101–5.  https://doi.org/10.1016/j.syapm.2012.10.009.CrossRefPubMedGoogle Scholar
  95. Wang L, Cao Y, Wang ET, Qiao YJ, Jiao S, Liu ZS, Zhao L, Wei GH. Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Syst Appl Microbiol. 2016;39(3):211–9.  https://doi.org/10.1016/j.syapm.2016.02.001.CrossRefPubMedGoogle Scholar
  96. Wang XL, Cui WJ, Feng XY, Zhong ZM, Li Y, Chen WX, Chen WF, Shao XM, Tian CF. Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: a strong selection of facultative microsymbionts. Soil Biol Biochem. 2018;116:340–50.  https://doi.org/10.1016/j.soilbio.2017.10.033.CrossRefGoogle Scholar
  97. Wdowiak S, Malek W. Numerical analysis of Astragalus cicer microsymbionts. Curr Microbiol. 2000;41(2):142–8.CrossRefGoogle Scholar
  98. Wei GH, Tan ZY, Zhu ME, Wang ET, Han SZ, Chen WX. Characterization of rhizobia isolated from legume species within the genera Astragalus and Lespedeza grown in the Loess Plateau of China and description of Rhizobium loessense sp. nov. Int J Syst Evol Microbiol. 2003;53(Pt 5):1575–83.  https://doi.org/10.1099/ijs.0.02031-0.CrossRefPubMedGoogle Scholar
  99. Wei GH, Yu JF, Zhu YH, Chen WM, Wang L. Characterization of phenol degradation by Rhizobium sp. CCNWTB 701 isolated from Astragalus chrysopteru in mining tailing region. J Hazard Mater. 2008;151(1):111–7.  https://doi.org/10.1016/j.jhazmat.2007.05.058.CrossRefPubMedGoogle Scholar
  100. Willems A, Fernández-López M, Muñoz-Adelantado E, Goris J, De Vos P, Martínez-Romero E, Toro N, Gillis M. Description of new Ensifer strains from nodules and proposal to transfer Ensifer adhaerens Casida 1982 to Sinorhizobium as Sinorhizobium adhaerens comb. nov. request for an opinion. Int J Syst Evol Microbiol. 2003;53(4):1207–17.  https://doi.org/10.1099/ijs.0.02264-0.CrossRefPubMedGoogle Scholar
  101. Xiang T, Uno T, Ogino F, Ai C, Duo J, Sankawa U. Antioxidant constituents of Caragana tibetica. Chem Pharm Bull. 2005;53:1204–6.CrossRefGoogle Scholar
  102. Xiong HY, Zhang XX, Guo HJ, Ji YY, Li Y, Wang XL, Zhao W, Mo FY, Chen JC, Yang T, Zong X, Chen WX, Tian CF. The epidemicity of facultative microsymbionts in faba bean rhizosphere soils. Soil Biol Biochem. 2017;115:243–52.  https://doi.org/10.1016/j.soilbio.2017.08.032.CrossRefGoogle Scholar
  103. Xu L, Zhang Y, Li C, Wang X, Liu J, Friman V-P. Nocardioides astragali sp. nov., isolated from a nodule of wild Astragalus chrysopterus in northwestern China. Anton Leeuw Int J Gen Mol Microbiol. 2018;111(7):1157–63.  https://doi.org/10.1007/s10482-018-1020-1.CrossRefGoogle Scholar
  104. Yan XR, Chen WF, Fu JF, Lu YL, Xue CY, Sui XH, Li Y, Wang ET, Chen WX. Mesorhizobium spp. are the main microsymbionts of Caragana spp. grown in Liaoning Province of China. FEMS Microbiol Lett. 2007;271(2):265–73.  https://doi.org/10.1111/j.1574-6968.2007.00727.x.CrossRefPubMedGoogle Scholar
  105. Yan H, Ji ZJ, Jiao YS, Wang ET, Chen WF, Guo BL, Chen WX. Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. Syst Appl Microbiol. 2016a;39(2):141–9.  https://doi.org/10.1016/j.syapm.2016.01.004.CrossRefPubMedGoogle Scholar
  106. Yan H, Yan J, Sui XH, Wang ET, Chen WX, Zhang XX, Chen WF. Ensifer glycinis sp. nov., a rhizobial species associated with species of the genus Glycine. Int J Syst Evol Microbiol. 2016b;66:2910–6.  https://doi.org/10.1099/ijsem.0.001120.CrossRefPubMedGoogle Scholar
  107. Yan H, Xie JB, Ji ZJ, Yuan N, Tian CF, Ji SK, Wu ZY, Zhong L, Chen WX, Du ZL, Wang ET, Chen WF. Evolutionarily conserved nodE, nodO, T1SS, and hydrogenase system in rhizobia of Astragalus membranaceus and Caragana intermedia. Front Microbiol. 2017;8:2282.  https://doi.org/10.3389/fmicb.2017.02282.CrossRefPubMedPubMedCentralGoogle Scholar
  108. Zakhia F, Jeder H, Domergue O, Willems A, Cleyet-Marel J-C, Gillis M, Dreyfus B, de Lajudie P. Characterisation of wild legume nodulating bacteria (LNB) in the infra-arid zone of Tunisia. Syst Appl Microbiol. 2004;27(3):380–95.  https://doi.org/10.1078/0723-2020-00273.CrossRefPubMedGoogle Scholar
  109. Zhang ML. A dispersal and vicariance analysis of the genus Caragana. J Integr Plant Biol. 2005;47:897–904.CrossRefGoogle Scholar
  110. Zhang YM, Li Y Jr, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol. 2011;77(18):6331–42.  https://doi.org/10.1128/aem.00542-11.CrossRefPubMedPubMedCentralGoogle Scholar
  111. Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX. Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol. 2012;62(Pt 11):2737–42.  https://doi.org/10.1099/ijs.0.038265-0.CrossRefPubMedGoogle Scholar
  112. Zhang YJ, Zheng WT, Everall I, Young JP, Zhang XX, Tian CF, Sui XH, Wang ET, Chen WX. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol. 2015;65(9):2960–7.  https://doi.org/10.1099/ijs.0.000365.CrossRefPubMedGoogle Scholar
  113. Zhang J, Guo C, Chen W, de Lajudie P, Zhang Z, Shang Y, Wang ET. Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China. Int J Syst Evol Microbiol. 2018;68(6):1930–6.  https://doi.org/10.1099/ijsem.0.002770.CrossRefPubMedGoogle Scholar
  114. Zhao Z, Williams S, Schuman GE. Renodulation and characterization of Rhizobium isolates from cicer milkvetch (Astragalus cicer L.). Biol Fertil Soils. 1997;25:169–74.CrossRefGoogle Scholar
  115. Zhao CT, Wang ET, Chen WF, Chen WX. Diverse genomic species and evidences of symbiotic gene lateral transfer detected among the rhizobia associated with Astragalus species grown in the temperate regions of China. FEMS Microbiol Lett. 2008;286(2):263–73.  https://doi.org/10.1111/j.1574-6968.2008.01282.x.CrossRefPubMedGoogle Scholar
  116. Zhao L, Deng Z, Yang W, Cao Y, Wang E, Wei G. Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol. 2010;33(8):468–77.  https://doi.org/10.1016/j.syapm.2010.08.004.CrossRefPubMedGoogle Scholar
  117. Zhao CT, Wang ET, Zhang YM, Chen WF, Sui XH, Chen WX, Liu HC, Zhang XX. Mesorhizobium silamurunense sp. nov., isolated from root nodules of Astragalus species. Int J Syst Evol Microbiol. 2012;62:2180–6.  https://doi.org/10.1099/ijs.0.031229-0.CrossRefPubMedGoogle Scholar
  118. Zheng WT, Li Y Jr, Wang R, Sui XH, Zhang XX, Zhang JJ, Wang ET, Chen WX. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol. 2013;63(Pt 6):2002–7.  https://doi.org/10.1099/ijs.0.044362-0.CrossRefPubMedGoogle Scholar
  119. Zhou S, Li Q, Jiang H, Lindstrom K, Zhang X. Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii. Int J Syst Evol Microbiol. 2013;63:2794–9.  https://doi.org/10.1099/ijs.0.044685-0.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of AgrobiotechnologyBeijingChina
  2. 2.College of Biological Sciences and Rhizobium Research CenterChina Agricultural UniversityBeijingChina

Personalised recommendations