Advertisement

Diversity of Interactions Between Rhizobia and Legumes

  • Wen Feng ChenEmail author
Chapter

Abstract

The relationship between rhizobia and legumes can be specific or promiscuous. Some rhizobia can nodulate a diverse range of legumes, while other rhizobia only infect specific legumes. From the plant perspective, some legumes can be nodulated only by specific rhizobia, while other legumes can be nodulated by different genera of rhizobia. Various interactions between rhizobia and legumes are reviewed in this chapter. In addition, different infection patterns, nodule morphology and development and types of bacteroids in nodule cells are briefly discussed.

References

  1. Acosta-Jurado S, Alias-Villegas C, Navarro-Gomez P, Zehner S, del Socorro Murdoch P, Rodriguez-Carvajal MA, Soto MJ, Ollero F-J, Ruiz-Sainz JE, Goettfert M, Vinardell J-M. The Sinorhizobium fredii HH103 MucR1 global regulator is connected with the nod regulon and is required for efficient symbiosis with Lotus burttii and Glycine max cv. Williams. Mol Plant-Microbe Interact. 2016;29(9):700–12.  https://doi.org/10.1094/mpmi-06-16-0116-r.CrossRefPubMedGoogle Scholar
  2. Aguilar OM, Riva O, Peltzer E. Analysis of Rhizobium etli and of its symbiosis with wild Phaseolus vulgaris supports coevolution in centers of host diversification. Proc Natl Acad Sci U S A. 2004;101:13548–53.CrossRefGoogle Scholar
  3. Allen ON, Allen EK. The Leguminosae, a source book of characteristics, uses, and nodulation. London: University of Wisconsin Press; 1981.Google Scholar
  4. Amarger N, Bours M, Revoy F, Allard MR, Laguerre G. Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant Soil. 1994;161(2):147–56.  https://doi.org/10.1007/BF00046386.CrossRefGoogle Scholar
  5. Amarger N, Macheret V, Laguerre G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol. 1997;47:996–1006.CrossRefGoogle Scholar
  6. Aouani ME, Mhamdi R, Jebara M, Amarger N. Characterization of rhizobia nodulating chickpea in Tunisia. Agronomie. 2001;21(6–7):577–81.CrossRefGoogle Scholar
  7. Armas-Capote N, Perez-Yepez J, Martinez-Hidalgo P, Garzon-Machado V, del Arco-Aguilar M, Velazquez E, Leon-Barrios M. Core and symbiotic genes reveal nine Mesorhizobium genospecies and three symbiotic lineages among the rhizobia nodulating Cicer canariense in its natural habitat (La Palma, Canary Islands). Syst Appl Microbiol. 2014;37(2):140–8.  https://doi.org/10.1016/j.syapm.2013.08.004.CrossRefPubMedGoogle Scholar
  8. Behm JE, Geurts R, Kiers ET. Parasponia: a novel system for studying mutualism stability. Trends Plant Sci. 2014;19(12):757–63.CrossRefGoogle Scholar
  9. Ben Romdhane S, Aouani ME, Mhamdi R. Inefficient nodulation of chickpea (Cicer arietinum L.) in the arid and Saharan climates in Tunisia by Sinorhizobium meliloti biovar medicaginis. Ann Microbiol. 2007;57(1):15–9.  https://doi.org/10.1007/bf03175044.CrossRefGoogle Scholar
  10. Bender GL, Nayudu M, Goydych M, Rolfe BG. Early infection events in the nodulation of the non-legume Paraponia andersonii by Bradyrhizobium. Plant Sci. 1987;51:285–93.CrossRefGoogle Scholar
  11. Bianco L. Rhizobial infection in Adesmia bicolor (Fabaceae) roots. Arch Microbiol. 2014;196(9):675–9.  https://doi.org/10.1007/s00203-014-1004-0.CrossRefPubMedGoogle Scholar
  12. Boogerd FC, vanRossum D. Nodulation of groundnut by Bradyrhizobium: a simple infection process by crack entry. FEMS Microbiol Rev. 1997;21(1):5–27.  https://doi.org/10.1016/s0168-6445(97)00004-1.CrossRefGoogle Scholar
  13. Brewin NJ, Beringer JE, Johnston AWB. Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. Microbiology. 1980;120(2):413–20.CrossRefGoogle Scholar
  14. Cao Y, Wang E-T, Zhao L, Chen W-M, Wei G-H. Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol Biochem. 2014;78:128–37.  https://doi.org/10.1016/j.soilbio.2014.07.026.CrossRefGoogle Scholar
  15. Capoen W, Goormachtig S, Holsters M. Water-tolerant legume nodulation. J Exp Bot. 2010;61(5):1251–5.  https://doi.org/10.1093/jxb/erp326.CrossRefPubMedGoogle Scholar
  16. Casida LE. Bacterial predators of Micrococcus luteus in soil. Appl Environ Microbiol. 1980;39(5):1035–41.PubMedPubMedCentralGoogle Scholar
  17. Casida LE. Ensifer adhaerens gen. nov., sp. nov.: a bacterial predator of bacteria in soil. Int J Syst Evol Microbiol. 1982;32(3):339–45.  https://doi.org/10.1099/00207713-32-3-339.CrossRefGoogle Scholar
  18. Chang YL, Wang JY, Wang ET, Liu HC, Sui XH, Chen WX. Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea. Int J Syst Evol Microbiol. 2011;61(10):2496–502.  https://doi.org/10.1099/ijs.0.027110-0.CrossRefGoogle Scholar
  19. Chen WX, Wang E, Wang SY, Li YB, Chen XQ, Li YB. Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Bacteriol. 1995;45(1):153–9.  https://doi.org/10.1099/00207713-45-1-153.CrossRefGoogle Scholar
  20. Chen Q, Zhang X, Terefework Z, Kaijalainen S, Li D, Lindström K. Diversity and compatibility of peanut (Arachis hypogaea L.) bradyrhizobia and their host plants. Plant Soil. 2003;255(2):605–17.  https://doi.org/10.1023/a:1026039503225.CrossRefGoogle Scholar
  21. Chen J, Hu M, Ma H, Wang Y, Wang ET, Zhou Z, Gu J. Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province. Syst Appl Microbiol. 2016;39(6):418–27.  https://doi.org/10.1016/j.syapm.2016.06.002.CrossRefGoogle Scholar
  22. Chen WH, Yang SH, Li ZH, Zhang XX, Sui XH, Wang ET, Chen WX, Chen WF. Ensifer shofinae sp. nov., a novel rhizobial species isolated from root nodules of soybean (Glycine max). Syst Appl Microbiol. 2017;40(3):144–9.  https://doi.org/10.1016/j.syapm.2017.01.002.CrossRefGoogle Scholar
  23. Crespo-Rivas JC, Guefrachi I, Mok KC, Villaecija-Aguilar JA, Acosta-Jurado S, Pierre O, Ruiz-Sainz JE, Taga ME, Mergaert P, Vinardell JM. Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the Inverted Repeat-Lacking Clade legume Glycyrrhiza uralensis. Environ Microbiol. 2016;18(8):2392–404.  https://doi.org/10.1111/1462-2920.13101.CrossRefPubMedGoogle Scholar
  24. Dadarwal KR. Host bacterium factors involved in legume symbioses. Indian J Microbiol. 1980;20:245–52.Google Scholar
  25. Dall’Agnol RF, Ribeiro RA, Delamuta JRM, Ormeno-Orrillo E, Rogel MA, Andrade DS, Martinez-Romero E, Hungria M. Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol. 2014;64:3222–9.  https://doi.org/10.1099/ijs.0.064543-0.CrossRefGoogle Scholar
  26. de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Evol Microbiol. 1994;44(4):715–33.  https://doi.org/10.1099/00207713-44-4-715.CrossRefGoogle Scholar
  27. De Meyer SE, Wee Tan H, Heenan PB, Andrews M, Willems A. Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol. 2015;65(10):3419–26.  https://doi.org/10.1099/ijsem.0.000430.CrossRefPubMedGoogle Scholar
  28. De Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A. Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int J Syst Evol Microbiol. 2016;66(2):786–95.  https://doi.org/10.1099/ijsem.0.000796.CrossRefPubMedGoogle Scholar
  29. Dekkiche S, Benguedouar A, Sbabou L, Taha K, Filalimaltouf A, Béna G. Chickpea (Cicer arietinum) is nodulated by unexpected wide diversity of Mesorhizobium species in Eastern Algeria. Arch Agron Soil Sci. 2017;64(2):285–97.CrossRefGoogle Scholar
  30. Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E, Hungria M. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol. 2013;63(9):3342–51.  https://doi.org/10.1099/ijs.0.049130-0.CrossRefPubMedGoogle Scholar
  31. D’Haeze W, Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology. 2002;12(6):79R–105R.CrossRefGoogle Scholar
  32. El-Akhal MR, Rincon A, Mourabit NE, Pueyo JJ, Barrijal S. Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (Arachis hypogaea L.) grown in Moroccan soils. J Basic Microbiol. 2009;49(5):415–25.  https://doi.org/10.1002/jobm.200800359.CrossRefGoogle Scholar
  33. Flores-Félix JD, Carro L, Velázquez E, Valverde A, Cerda-Castillo E, Garcia-Fraile P, Rivas R. Phyllobacterium endophyticum sp. nov. isolated from nodules of Phaseolus vulgaris in Northern Spain. Int J Syst Evol Microbiol. 2012;63:821–6.  https://doi.org/10.1099/ijs.0.038497-0.CrossRefGoogle Scholar
  34. Florian L, Djamel G, Anaïs C, Nico N, Camille V, Olivier P, Coline S, Joël F, Christian J, Attila S, Samuel M, Christophe S, István N, Attila K, Yves D, Eric G, Peter M, Benoit A. Transcriptomic dissection of Bradyrhizobium sp. strain ORS285 in symbiosis with Aeschynomene spp. inducing different bacteroid morphotypes with contrasted symbiotic efficiency. Environ Microbiol 0 (ja). 2018.  https://doi.org/10.1111/1462-2920.14292.CrossRefGoogle Scholar
  35. Fournier J, Timmers ACJ, Sieberer BJ, Jauneau A, Chabaud M, Barker DG. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. Plant Physiol. 2008;148(4):1985–95.  https://doi.org/10.1104/pp.108.125674.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Gage DJ. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol Mol Biol Rev. 2004;68(2):280–300.  https://doi.org/10.1128/mmbr.68.2.280-300.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  37. García-Fraile P, Mulas-García D, Peix A, Rivas R, González-Andrés F, Velázquez E. Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol. 2010;56:657–66.CrossRefGoogle Scholar
  38. Grant WM, Trese AT. Developmental regulation of nodulation in Arachis hypogea (peanut) and Aeschynomene americana (jointvetch). Symbiosis. 1996;20(3):247–58.Google Scholar
  39. Gu CT, Wang ET, Sui XH, Chen WF, Chen WX. Diversity and geographical distribution of rhizobia associated with Lespedeza spp. in temperate and subtropical regions of China. Arch Microbiol. 2007;188(4):355–65.  https://doi.org/10.1007/s00203-007-0256-3.CrossRefGoogle Scholar
  40. Hameed S, Yasmin S, Malik KA, Zafar Y, Hafeez FY. Rhizobium, Bradyrhizobium and Agrobacterium strains isolated from cultivated legumes. Biol Fertil Soils. 2004;39(3):179–85.CrossRefGoogle Scholar
  41. Hameed S, Mubeen F, Malik KA, Hafeez FY. Nodule co-occupancy of Agrobacterium and Bradyrhizobium with potential benefit to legume host. In: Wang YP, Lin M, Tian ZX, Elmerich C, Newton WE, editors. Biological nitrogen fixation, sustainable agriculture and environment: proceedings of 14th international nitrogen fixation congress. Dordrecht: Springer; 2005. p. 295–6.CrossRefGoogle Scholar
  42. Han TX, Wang ET, Han LL, Chen WF, Sui XH, Chen WX. Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol. 2008a;31:287–301.CrossRefGoogle Scholar
  43. Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Chen WX. Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol. 2008b;58:1693–9.CrossRefGoogle Scholar
  44. Herridge DF, Marcellos H, Felton WL, Turner GL, Peoples MB. Chickpea increases soil-N fertility in cereal systems through nitrate sparing and N2 fixation. Soil Biol Biochem. 1995;27(4):545–51.  https://doi.org/10.1016/0038-0717(95)98630-7.CrossRefGoogle Scholar
  45. Hirsch AM. Tansley review no. 40, Developmental biology of legume nodulation. New Phytol. 1992;122(2):211–37.  https://doi.org/10.1111/j.1469-8137.1992.tb04227.x.CrossRefGoogle Scholar
  46. Hou BC, Wang ET, Li Y Jr, Jia RZ, Chen WF, Gao Y, Dong RJ, Chen WX. Rhizobium tibeticum sp. nov., a symbiotic bacterium isolated from Trigonella archiducis-nicolai (Sirj.) Vassilcz. Int J Syst Evol Microbiol. 2009;59(Pt 12):3051–7.  https://doi.org/10.1099/ijs.0.009647-0.CrossRefPubMedGoogle Scholar
  47. Hung M-H, Bhagwath AA, Shen F-T, Devasya RP, Young C-C. Indigenous rhizobia associated with native shrubby legumes in Taiwan. Pedobiologia. 2005;49(6):577–84.  https://doi.org/10.1016/j.pedobi.2005.06.002.CrossRefGoogle Scholar
  48. Jaiswal SK, Msimbira LA, Dakora FD. Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Syst Appl Microbiol. 2017;40(4):215–26.  https://doi.org/10.1016/j.syapm.2017.02.002.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Jarvis BDW, Downer HL, Young JPW. Phylogeny of fast-growing soybean-nodulating rhizobia supports synonymy of Sinorhizobium and Rhizobium and assignment to Rhizobium fredii. Int J Syst Evol Microbiol. 1992;42(1):93–6.  https://doi.org/10.1099/00207713-42-1-93.CrossRefGoogle Scholar
  50. Jarvis BDW, van Berkum P, Chen WX, Nour SN, Fernandez MP, Cleyet-Marel JC, Gillis M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol. 1997;47:895–8.CrossRefGoogle Scholar
  51. Jiao YS, Liu YH, Yan H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF. Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant-Microbe Interact. 2015a;28(12):1338–52.  https://doi.org/10.1094/MPMI-06-15-0141-R.CrossRefGoogle Scholar
  52. Jiao YS, Liu YH, Yen H, Wang ET, Tian CF, Chen WX, Guo BL, Chen WF. Rhizobial diversity and nodulation characteristics of the extremely promiscuous legume Sophora flavescens. Mol Plant-Microbe Interact. 2015b;28(12):1338–52.  https://doi.org/10.1094/mpmi-06-15-0141-r.CrossRefGoogle Scholar
  53. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Wang ET, Guo BL, Chen WX, Chen WF. Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens. Int J Syst Evol Microbiol. 2015c;65(2):497–503.  https://doi.org/10.1099/ijs.0.068916-0.CrossRefGoogle Scholar
  54. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH, Zhang XX, Wang ET, Chen WX, Chen WF. Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol. 2015d;65(2):399–406.  https://doi.org/10.1099/ijs.0.067017-0.CrossRefPubMedGoogle Scholar
  55. Jordan DC. NOTES: transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol. 1982;32(1):136–9.  https://doi.org/10.1099/00207713-32-1-136.CrossRefGoogle Scholar
  56. Kuykendall LD, Saxena B, Devine TE, Udell SE. Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol. 1992;38(6):501–5.  https://doi.org/10.1139/m92-082.CrossRefGoogle Scholar
  57. Laranjo M, Young JPW, Oliveira S. Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst Appl Microbiol. 2012;35(6):359–67.  https://doi.org/10.1016/j.syapm.2012.06.002.CrossRefGoogle Scholar
  58. Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX. Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol. 2011;61(8):1981–8.  https://doi.org/10.1099/ijs.0.025049-0.CrossRefGoogle Scholar
  59. Li Y, Tian CF, Chen WF, Wang L, Sui XH, Chen WX. High-resolution transcriptomic analyses of Sinorhizobium sp NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS One. 2013;8(8):e70531.  https://doi.org/10.1371/journal.pone.0070531.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Li YH, Wang R, Zhang XX, Young JPW, Wang ET, Sui XH, Chen WX. Bradyrhizobium guangdongense sp. nov. and Bradyrhizobium guangxiense sp. nov., isolated from effective nodules of peanut. Int J Syst Evol Microbiol. 2015;65(12):4655–61.  https://doi.org/10.1099/ijsem.0.000629.CrossRefGoogle Scholar
  61. Li YZ, Wang D, Feng XY, Jiao J, Chen WX, Tian CF. Genetic analysis reveals the essential role of nitrogen phosphotransferase system components in Sinorhizobium fredii CCBAU 45436 symbioses with soybean and pigeonpea plants. Appl Environ Microbiol. 2016;82(4):1305–15.  https://doi.org/10.1128/AEM.03454-15.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Liu YH, Jiao YS, Liu LX, Wang D, Tian CF, Wang ET, Wang L, Chen WX, Wu SY, Guo BL, Guan ZG, Chen WF. Non-specific symbiosis between Sophora flavescens and different rhizobia. Mol Plant-Microbe Interact. 2018a;31(2):224–32.  https://doi.org/10.1094/MPMI-05-17-0117-R.CrossRefGoogle Scholar
  63. Liu YH, Wang ET, Jiao YS, Tian CF, Wang L, Wang ZJ, Guan JJ, Singh RP, Chen WX, Chen WF. Symbiotic characteristics of Bradyrhizobium diazoefficiens USDA 110 mutants associated with shrubby sophora (Sophora flavescens) and soybean (Glycine max). Microbiol Res. 2018b;214:19–27.  https://doi.org/10.1016/j.micres.2018.05.012.CrossRefGoogle Scholar
  64. Lu JK, Kang LH, He XH, Xu DP. Multilocus sequence analysis of the rhizobia from five woody legumes in southern China. Afr J Microbiol Res. 2011;5(30):5343–53.  https://doi.org/10.5897/ajmr11.826.CrossRefGoogle Scholar
  65. Madsen LH, Tirichine L, Jurkiewicz A, Sullivan JT, Heckmann AB, Bek AS, Ronson CW, James EK, Stougaard J. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nat Commun. 2010;1:10.  https://doi.org/10.1038/ncomms1009.CrossRefPubMedGoogle Scholar
  66. Markmann K, Radutoiu S, Stougaard J. Infection of Lotus japonicus roots by Mesorhizobium loti. In: Perotto S, editor. Signaling and communication in plant symbiosis, Signaling and communication in plants. Heidelberg: Springer; 2012. p. 31–50.  https://doi.org/10.1007/978-3-642-20966-6_2.CrossRefGoogle Scholar
  67. Martinez-Hidalgo P, Flores-Felix JD, Menendez E, Rivas R, Carro L, Mateos PF, Martinez-Molina E, Leon-Barrios M, Velazquez E. Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Syst Appl Microbiol. 2015;38(5):346–50.  https://doi.org/10.1016/j.syapm.2015.03.011.CrossRefPubMedGoogle Scholar
  68. Martinez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris l. beans and Leucaena sp. trees. Int J Syst Bacteriol. 1991;41(3):417–26.CrossRefGoogle Scholar
  69. Mousavi SA, Willems A, Nesme X, de Lajudie PL, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol. 2015;38:84–90.CrossRefGoogle Scholar
  70. Mulas D, García-Fraile P, Carro L, Ramírez-Bahena MH, Casquero P, Velázquez E, González-Andrés F. Distribution and efficiency of Rhizobium leguminosarum strains nodulating Phaseolus vulgaris in northern Spanish soils: selection of native strains that replace conventional N fertilization. Soil Biol Biochem. 2011;43:2283–93.CrossRefGoogle Scholar
  71. Müller J, Wiemken A, Boller T. Redifferentiation of bacteria isolated from Lotus japonicus root nodules colonized by Rhizobium sp. NGR234. J Exp Bot. 2001;52(364):2181–6.  https://doi.org/10.1093/jexbot/52.364.2181.CrossRefPubMedGoogle Scholar
  72. Muñoz V, Ibañez F, Tonelli ML, Valetti L, Anzuay MS, Fabra A. Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina. Syst Appl Microbiol. 2011;34(6):446–52.  https://doi.org/10.1016/j.syapm.2011.04.007.CrossRefGoogle Scholar
  73. Nandasena K, Yates R, Tiwari R, O’Hara G, Howieson J, Ninawi M, Chertkov O, Detter C, Tapia R, Han S, Woyke T, Pitluck S, Nolan M, Land M, Liolios K, Pati A, Copeland A, Kyrpides N, Ivanova N, Goodwin L, Meenakshi U, Reeve W. Complete genome sequence of Mesorhizobium ciceri bv. biserrulae type strain (WSM1271T). Stand Genomic Sci. 2014;9(3):462–72.  https://doi.org/10.4056/sigs.4458283.CrossRefPubMedGoogle Scholar
  74. Nandwani R, Dudeja SS. Molecular diversity of a native mesorhizobial population of nodulating chickpea (Cicer arietinum L.) in Indian soils. J Basic Microbiol. 2009;49(5):463–70.  https://doi.org/10.1002/jobm.200800355.CrossRefPubMedGoogle Scholar
  75. Naseem S, Aslam A, Malik KA, Hafeez FY. Understanding the genetic instability in Cicer arietinum root nodule bacteria. In: Wang YP, Lin M, Tian ZX, Elmerich C, Newton WE, editors. Biological nitrogen fixation, sustainable agriculture and environment: proceedings of 14th international nitrogen fixation congress. Dordrecht: Springer; 2005. p. 319.Google Scholar
  76. Nguyen TD, Heenan PB, De Meyer SE, James TK, Chen W-M, Morton JD, Andrews M. Genetic diversity and nitrogen fixation of mesorhizobia symbionts of New Zealand endemic Sophora species. N Z J Bot. 2017;55(4):466–78.  https://doi.org/10.1080/0028825x.2017.1376689.CrossRefGoogle Scholar
  77. Nour SM, Fernandez MP, Normand P, Cleyetmarel JC. Rhizobium ciceri sp. nov. consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol. 1994;44(3):511–22.CrossRefGoogle Scholar
  78. Nour SM, Cleyet-Marel JC, Normand P, Fernandez MP. Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol. 1995;45(4):640–8.  https://doi.org/10.1099/00207713-45-4-640.CrossRefGoogle Scholar
  79. Ogutcu H, Adiguzel A, Gulluce M, Karadayi M, Sahin F. Molecular characterization of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum-Turkey. Rom Biotechnol Lett. 2009;14(2):4294–300.Google Scholar
  80. Oono R, Denison RF. Comparing symbiotic efficiency between swollen versus nonswollen rhizobial bacteroids. Plant Physiol. 2010;154(3):1541–8.  https://doi.org/10.1104/pp.110.163436.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Op den Camp RHM, Polone E, Fedorova E, Roelofsen W, Squartini A, Op den Camp HJM, Bisseling T, Geurts R. Nonlegume Parasponia andersonii deploys a broad Rhizobium host range strategy resulting in largely variable symbiotic effectiveness. Mol Plant-Microbe Interact. 2012;25(7):954–63.  https://doi.org/10.1094/MPMI-11-11-0304.CrossRefGoogle Scholar
  82. Ormeño-Orrillo E, Aguilar-Cuba Y, ZúñigaDávila D. Draft genome sequence of Rhizobium sophoriradicis H4, a nitrogen-fixing bacterium associated with the leguminous plant Phaseolus vulgaris on the coast of Peru. Genome Announc. 2018;6(21):e00241–18.CrossRefGoogle Scholar
  83. Osei O, Abaidoo RC, Ahiabor BDK, Boddey RM, Rouws LFM. Bacteria related to Bradyrhizobium yuanmingense from Ghana are effective groundnut micro-symbionts. Appl Soil Ecol. 2018;127:41–50.  https://doi.org/10.1016/j.apsoil.2018.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pueppke SG, Broughton WJ. Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant-Microbe Interact. 1999;12(4):293–318.  https://doi.org/10.1094/mpmi.1999.12.4.293.CrossRefPubMedGoogle Scholar
  85. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R, Igual JM, Mateos PF, Martínez-Molina E, Velázquez E. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol. 2008;58(11):2484–90.  https://doi.org/10.1099/ijs.0.65621-0.CrossRefGoogle Scholar
  86. Rao VR, Kerster DL. Infection threads in the root hairs of soybean (Glycine max) plants inoculated with Rhizobium japonicum. Protoplasma. 1978;97:311–6.CrossRefGoogle Scholar
  87. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG, Martínez J, Thompson FL, Martínez-Romero E, Hungria M. Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol. 2012;62(5):1179–84.  https://doi.org/10.1099/ijs.0.032912-0.CrossRefGoogle Scholar
  88. Rivas R, Laranjo M, Mateos PF, Oliveira S, Martinez-Molina E, Velazquez E. Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol. 2007;44(4):412–8.  https://doi.org/10.1111/j.1472-765X.2006.02086.x.CrossRefGoogle Scholar
  89. Rome S, Fernandez MP, Brunel B, Normand P, Cleyet-Marel JC. Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. Int J Syst Bacteriol. 1996;46(4):972–80.  https://doi.org/10.1099/00207713-46-4-972.CrossRefPubMedGoogle Scholar
  90. Sadowsky MJ, Cregan PB, Keyser HH. Nodulation and nitrogen fixation efficacy of Rhizobium fredii with Phaseolus vulgaris genotypes. Appl Environ Microbiol. 1988;54(8):1907–10.PubMedPubMedCentralGoogle Scholar
  91. Santos JWMD, Silva JFD, Ferreira TDDS, Dias MAM, Fraiz ACR, Escobar IEC, Santos RCD, Lima LMD, Morgante CV, Fernandes-Júnior PI. Molecular and symbiotic characterization of peanut bradyrhizobia from the semi-arid region of Brazil. Appl Soil Ecol. 2017;121:177–84.  https://doi.org/10.1016/j.apsoil.2017.09.033.CrossRefGoogle Scholar
  92. Schuldes J, Orbegoso MR, Schmeisser C, Krishnan HB, Daniel R, Streit WR. Complete genome sequence of the broad-host-range strain Sinorhizobium fredii USDA257. J Bacteriol. 2012;194(16):4483.  https://doi.org/10.1128/jb.00966-12.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Segundo E, Martinez-Abarca F, van Dillewijn P, Fernandez-Lopez M, Lagares A, Martinez-Drets G, Niehaus K, Puhler A, Toro N. Characterisation of symbiotically efficient alfalfa-nodulating rhizobia isolated from acid soils of Argentina and Uruguay. FEMS Microbiol Ecol. 1999;28(2):169–76.  https://doi.org/10.1016/s0168-6496(98)00102-0.CrossRefGoogle Scholar
  94. Sein CC, Mitlöner R. Erythrophloeum fordii Oliver: ecology and silviculture. Bogor: Center for International Forestry Research; 2011.Google Scholar
  95. Sprent JI. Legume nodulation: a global perspective. Singapore: Wiley-Blackwell; 2009.CrossRefGoogle Scholar
  96. Stajković-Srbinović O, De Meyer SE, Miličić B, Delić D, Willems A. Genetic diversity of rhizobia associated with alfalfa in Serbian soils. Biol Fertil Soils. 2012;48(5):531–45.  https://doi.org/10.1007/s00374-011-0646-1.CrossRefGoogle Scholar
  97. Stokkermans TJW, Peters NK. Bradyrhizobium elkanii lipo-oligosaccharide signals induce complete nodule structures on Glycine soja Siebold et Zucc. Planta. 1994;193(3):413–20.CrossRefGoogle Scholar
  98. Taurian T, Ibañez F, Fabra A, Aguilar OM. Genetic diversity of rhizobia nodulating Arachis hypogaea L. in central Argentinean soils. Plant Soil. 2006;282(1):41–52.  https://doi.org/10.1007/s11104-005-5314-5.CrossRefGoogle Scholar
  99. Tena W, Wolde-Meskel E, Degefu T, Walley F. Genetic and phenotypic diversity of rhizobia nodulating chickpea (Cicer arietinum L.) in soils from southern and central Ethiopia. Can J Microbiol. 2017;63(8):690–707.  https://doi.org/10.1139/cjm-2016-0776.CrossRefPubMedGoogle Scholar
  100. Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang S, Wang J, Gilbert LB, Li YR, Chen WX. Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci U S A. 2012;109(22):8629–34.CrossRefGoogle Scholar
  101. Tirichine L, James EK, Sandal N, Stougaard J. Spontaneous root-nodule formation in the model legume Lotus japonicus: a novel class of mutants nodulates in the absence of rhizobia. Mol Plant-Microbe Interact. 2006;19(4):373–82.  https://doi.org/10.1094/mpmi-19-0373.CrossRefPubMedGoogle Scholar
  102. Toma MA, de Carvalho TS, Guimaraes AA, da Costa EM, da Silva JS, de Souza Moreira FM. Tripartite symbiosis of Sophora tomentosa, rhizobia and arbuscular mycorhizal fungi. Braz J Microbiol. 2017;48(4):680–8.  https://doi.org/10.1016/j.bjm.2017.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  103. Torres Tejerizo G, Rogel MA, Ormeno-Orrillo E, Althabegoiti MJ, Nilsson JF, Niehaus K, Schluter A, Puhler A, Del Papa MF, Lagares A, Martinez-Romero E, Pistorio M. Rhizobium favelukesii sp. nov., isolated from the root nodules of alfalfa (Medicago sativa L.). Int J Syst Evol Microbiol. 2016;66(11):4451–7.  https://doi.org/10.1099/ijsem.0.001373.CrossRefPubMedGoogle Scholar
  104. Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris. Int J Syst Evol Microbiol. 2006;56:2631–7.CrossRefGoogle Scholar
  105. Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar’an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo M-C, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol. 2013;31:240.  https://doi.org/10.1038/nbt.2491s.CrossRefPubMedGoogle Scholar
  106. Vega-Hernandez MC, Perez-Galdona R, Dazzo FB, Jarabo-Lorenzo A, Alfayate MC, Leon-Barrios M. Novel infection process in the indeterminate root nodule symbiosis between Chamaecytisus proliferus (tagasaste) and Bradyrhizobium sp. New Phytol. 2001;150(3):707–21.  https://doi.org/10.1046/j.1469-8137.2001.00120.x.CrossRefGoogle Scholar
  107. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martinez-Romero E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol. 1999;49(Pt 1):51–65.  https://doi.org/10.1099/00207713-49-1-51.CrossRefGoogle Scholar
  108. Wang ET, Rogel MA, Sui XH, Chen WX, Martinez-Romero E, van Berkum P. Mesorhizobium amorphae, a rhizobial species that nodulates Amorpha fruticosa, is native to American soils. Arch Microbiol. 2002;178(4):301–5.  https://doi.org/10.1007/s00203-002-0448-9.CrossRefGoogle Scholar
  109. Wang F, Wang ET, Wu LJ, Sui XH, Li Y, Chen WX. Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol. 2011;61(11):2582–8.  https://doi.org/10.1099/ijs.0.026484-0.CrossRefGoogle Scholar
  110. Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, Sui XH, Chen WX. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol. 2013a;63(2):616–24.  https://doi.org/10.1099/ijs.0.034280-0.CrossRefPubMedGoogle Scholar
  111. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX, Sui XH, Wang ET, Hu JQ, Zhang LY, Chen WX. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol. 2013b;36(2):101–5.  https://doi.org/10.1016/j.syapm.2012.10.009.CrossRefGoogle Scholar
  112. Wang L, Cao Y, Wang ET, Qiao YJ, Jiao S, Liu ZS, Zhao L, Wei GH. Biodiversity and biogeography of rhizobia associated with common bean (Phaseolus vulgaris L.) in Shaanxi Province. Syst Appl Microbiol. 2016;39(3):211–9.  https://doi.org/10.1016/j.syapm.2016.02.001.CrossRefGoogle Scholar
  113. Wang XL, Cui WJ, Fgne XY, Zhong ZM, Li Y, Chen WX, Chen WF, Shao XM, Tian CF. Rhizobia inhabiting nodules and rhizosphere soils of alfalfa: a strong selection of facultative microsymbionts. Soil Biol Biochem. 2018;116:340–50.  https://doi.org/10.1016/j.soilbio.2017.10.033.CrossRefGoogle Scholar
  114. Weir BS, Turner SJ, Silvester WB, Park DC, Young JM. Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol. 2004;70:5980–7.CrossRefGoogle Scholar
  115. Xie F, Murray JD, Kim JY, Hechmann AB, Edwards A, Oldroyd GED, Downie JA. Legume pectate lyase required for root infection by rhizobia. Proc Natl Acad Sci U S A. 2012;109(2):633–8.CrossRefGoogle Scholar
  116. Xin D-W, Liao S, Xie Z-P, Hann DR, Steinle L, Boller T, Staehelin C. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234. PLoS Pathog. 2012;8(5):e1002707.  https://doi.org/10.1371/journal.ppat.1002707.CrossRefPubMedPubMedCentralGoogle Scholar
  117. Xu LM, Ge C, Cui Z, Li J, Fan H. Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol. 1995;45(4):706–11.  https://doi.org/10.1099/00207713-45-4-706.CrossRefPubMedGoogle Scholar
  118. Xu CC, Zhang D, Hann DR, Xie ZP, Staehelin C. Biochemical properties and in planta effects of NopM, a rhizobial E3 ubiquitin ligase. J Biol Chem. 2018;293(39):15304–15.  https://doi.org/10.1074/jbc.RA118.004444.CrossRefPubMedPubMedCentralGoogle Scholar
  119. Yan H, Ji ZJ, Jiao YS, Wang ET, Chen WF, Guo BL, Chen WX. Genetic diversity and distribution of rhizobia associated with the medicinal legumes Astragalus spp. and Hedysarum polybotrys in agricultural soils. Syst Appl Microbiol. 2016a;39(2):141–9.  https://doi.org/10.1016/j.syapm.2016.01.004.CrossRefGoogle Scholar
  120. Yan H, Yan J, Sui XH, Wang ET, Chen WX, Zhang XX, Chen WF. Ensifer glycinis sp. nov., a rhizobial species associated with species of the genus Glycine. Int J Syst Evol Microbiol. 2016b;66(8):2910–6.  https://doi.org/10.1099/ijsem.0.001120.CrossRefGoogle Scholar
  121. Yao Y, Wang R, Lu JK, Sui XH, Wang ET, Chen WX. Genetic diversity and evolution of Bradyrhizobium populations nodulating Erythrophleum fordii, an evergreen tree indigenous to the southern subtropical region of China. Appl Environ Microbiol. 2014;80(19):6184–94.  https://doi.org/10.1128/aem.01595-14.CrossRefPubMedPubMedCentralGoogle Scholar
  122. Yao Y, Sui XH, Zhang XX, Wang ET, Chen WX. Bradyrhizobium erythrophlei sp. nov. and Bradyrhizobium ferriligni sp. nov., isolated from effective nodules of Erythrophleum fordii. Int J Syst Evol Microbiol. 2015;65(6):1831–7.  https://doi.org/10.1099/ijs.0.000183.CrossRefPubMedGoogle Scholar
  123. Yu X, Cloutier S, Tambong JT, Bromfield ES. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol. 2014;64(Pt 9):3202–7.  https://doi.org/10.1099/ijs.0.065540-0.CrossRefPubMedPubMedCentralGoogle Scholar
  124. Zamani M, diCenzo GC, Milunovic B, Finan TM. A putative 3-hydroxyisobutyryl-CoA hydrolase is required for efficient symbiotic nitrogen fixation in Sinorhizobium meliloti and Sinorhizobium fredii NGR234. Environ Microbiol. 2017;19(1):218–36.  https://doi.org/10.1111/1462-2920.13570.CrossRefPubMedGoogle Scholar
  125. Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Li Y, Chen WX. Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. Int J Syst Evol Microbiol. 2012a;62:2737–42.  https://doi.org/10.1099/ijs.0.038265-0.CrossRefGoogle Scholar
  126. Zhang JJ, Lou K, Jin X, Mao PH, Wang ET, Tian CF, Sui XH, Chen WF, Chen WX. Distinctive Mesorhizobium populations associated with Cicer arietinum L. in alkaline soils of Xinjiang, China. Plant Soil. 2012b;353(1–2):123–34.  https://doi.org/10.1007/s11104-011-1014-5.CrossRefGoogle Scholar
  127. Zhang YM, Li Y Jr, Chen WF, Wang ET, Sui XH, Li QQ, Zhang YZ, Zhou YG, Chen WX. Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int J Syst Evol Microbiol. 2012c;62(Pt 8):1951–7.  https://doi.org/10.1099/ijs.0.034546-0.CrossRefPubMedGoogle Scholar
  128. Zhang JJ, Yu T, Lou K, Mao PH, Wang ET, Chen WF, Chen WX. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils. Syst Appl Microbiol. 2014;37(7):520–4.  https://doi.org/10.1016/j.syapm.2014.07.004.CrossRefPubMedGoogle Scholar
  129. Zhang JJ, Yang X, Guo C, de Lajudie P, Singh RP, Wang ET, Chen WF. Mesorhizobium muleiense and Mesorhizobium gsp. nov. are symbionts of Cicer arietinum L. in alkaline soils of Gansu, Northwest China. Plant Soil. 2017;410(1–2):103–12.  https://doi.org/10.1007/s11104-016-2987-x.CrossRefGoogle Scholar
  130. Zhang J, Guo C, Chen W, de Lajudie P, Zhang Z, Shang Y, Wang ET. Mesorhizobium wenxiniae sp. nov., isolated from chickpea (Cicer arietinum L.) in China. Int J Syst Evol Microbiol. 2018;68(6):1930–6.  https://doi.org/10.1099/ijsem.0.002770.CrossRefGoogle Scholar
  131. Zhao L, Deng Z, Yang W, Cao Y, Wang E, Wei G. Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol. 2010;33(8):468–77.  https://doi.org/10.1016/j.syapm.2010.08.004.CrossRefGoogle Scholar
  132. Zhou JC, Tchan YT, Vincent JM. Reproductive capacity of bacteroids in nodules of Trifolium repens L. and Glycine max (L.) Merr. Planta. 1985;163(4):473–82.  https://doi.org/10.1007/bf00392704.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of AgrobiotechnologyBeijingChina
  2. 2.College of Biological Sciences and Rhizobium Research CenterChina Agricultural UniversityBeijingChina

Personalised recommendations