Advertisement

History of Rhizobial Taxonomy

  • En Tao Wang
  • J. Peter W. Young
Chapter

Abstract

Biological diversity or biodiversity refers to the wide variety of living things on Earth, including the diversity of ecosystems, diversity of species and diversity of genes. Although studies of biodiversity have a long history, the term “biodiversity” was first used in 1986 by Walter G. Rosen in National Forum on Biodiversity (de Andrade Franco 2013). Ecosystem diversity is the largest scale of biodiversity and concerns systems such as the terrestrial ecosystem, the aquatic ecosystem, agricultural ecosystems, forestry ecosystems, etc., in which the organisms colonise and interact in trophic chains. The diversity of ecosystems can be measured in terms of variation in the complexity of communities, such as trophic levels, niche types/numbers, productivity and biotransformation efficiencies, etc., that depend on both species and genetic diversity (Ives and Carpente 2009). Species diversity is related to the numbers of species represented in the ecosystems or communities and considers both species richness and their relative abundance (species evenness) (Hill 1973). Gene or genetic diversity is usually applied to the biodiversity within species, relating to the total number of genetic characteristics in their chromosomes. This diversity allows microbial populations or species to adapt different environments. A greater gene diversity in a population or species means the existence of more alleles that offer the population and species a greater chance to adapt to variations in the environment and to maintain the population. It has been estimated that about 5.3 × 1031 megabases (Mb) of DNA exist on Earth (Landenmark et al. 2015), which form a huge gene pool for diverse metabolic pathways and for diversification of the species. In conclusion, biodiversity was defined by Wilson (1992) as “… all hereditarily based variation at all levels of organization, from the genes within a single local population, to the species composing all or part of a local community, and finally to the communities themselves that compose the living parts of the multifarious ecosystems of the world”.

References

  1. Anderson AS, Wellington EMH. The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol. 2001;51:797–814.PubMedCrossRefGoogle Scholar
  2. Austin B, Goodfellow M, Dickinson CH. Numerical taxonomy of phylloplane bacteria isolated from Lolium perenne. J Gen Microbiol. 1978;104:139–55.CrossRefGoogle Scholar
  3. Battistuzzi FU, Feijao A, Hedges SB. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol Biol. 2004;4:44.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Benton MJ. Exploring macroevolution using modern and fossil data. Proc R Soc B. 2015;282:20150569.PubMedCrossRefGoogle Scholar
  5. Borja J, Taleon DM, Auresenia J, Gallardo S. Polychlorinated biphenyls and their biodegradation. Process Biochem. 2005;40(6):1999–2013.CrossRefGoogle Scholar
  6. Boyd LA, Ridout C, O’Sullivan DM, Leach JE, Hei LH. Plant–pathogen interactions: disease resistance in modern agriculture. Trends Genet. 2013;29(4):233–40.PubMedCrossRefGoogle Scholar
  7. Brenner DJ, Staley JT, Krieg NR. Classification of prokaryotic organisms and the concept of bacterial speciation. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM, editors. Bergey’s manual of systematic bacteriology. Boston: Springer; 2005.Google Scholar
  8. Brondz I, Olsen I. Microbial chemotaxonomy. Chromatography, electrophoresis and relevant profiling techniques. J Chromatogr. 1986;379:367–411.PubMedCrossRefGoogle Scholar
  9. Brown JR, Doolittle WF. Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev. 1997;61(4):456–502.PubMedPubMedCentralGoogle Scholar
  10. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523(7559):208–11.PubMedCrossRefPubMedCentralGoogle Scholar
  11. Castellani A, Chalmers AJ. Manual of tropical medicine. 3rd ed. New York: Williams Wood and Co; 1919.Google Scholar
  12. Chen WX, Yan GH, Li JL. Numerical taxonomic study of fast-growing soybean rhizobia and proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol. 1988;38:392–7.CrossRefGoogle Scholar
  13. Chen W-X, Tan Z-Y, Gao J-L, Li Y, Wang E-T. Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol. 1997;47(3):870–3.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chidebe IN, Jaiswal SK, Dakor FD. Distribution and phylogeny of microsymbionts associated with cowpea (Vigna unguiculata) nodulation in three agro-ecological regions of Mozambique. Appl Environ Microbiol. 2018;84(2):e01712–7.PubMedPubMedCentralGoogle Scholar
  15. Coenye T, Gevers D, De Peer YV, Vandamme P, Swings J. Towards a prokaryotic genomic taxonomy. FEMS Microbiol Rev. 2005;29(2):147–67.PubMedCrossRefGoogle Scholar
  16. Dall’Agnol RF, Ribeiro RA, Delamuta JR, Ormeño-Orrillo E, Rogel MA, Andrade DS, Martínez-Romero E, Hungria M. Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol. 2014;64(9):3222–9.CrossRefGoogle Scholar
  17. de Andrade Franco JL. The concept of biodiversity and the history of conservation biology: from wilderness preservation to biodiversity conservation. História (São Paulo). 2013;32(2):21–48.CrossRefGoogle Scholar
  18. De Bruij FJ. Use of repetitive (repetitive extragenic palindromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Appl Environ Microbiol. 1992;58(7):2180–7.Google Scholar
  19. De Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M. Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol. 1994;44(4):715–33.CrossRefGoogle Scholar
  20. de Lajudie P, Laurent-Fulele E, Willems A, Torck U, Coopman R, Collins MD, Kersters K, Dreyfus B, Gillis M. Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. Int J Syst Bacteriol. 1998;48(4):1277–90.PubMedCrossRefPubMedCentralGoogle Scholar
  21. de Lajudie P, Andrews M, Ardley J, Eardly B, Jumas-Bilak E, Kuzmanović N, Lassalle F, Lindström K, Mhamdi R, Martínez-Romero E, Moulin L, Mousavi SA, Nesme X, Peix A, Puławska J, Steenkamp E, Stępkowski T, Tian C-F, Vinuesa P, Wei G, Willems A, Zilli J, Young P. Minimum standards for the description of new genera and species of rhizobia and agrobacteria. Int J Syst Evol Microbiol. 2019. (in press).Google Scholar
  22. De Ley J, Rassel A. DNA base composition, flagellation and taxonomy of the genus Rhizobium. J Gen Microbiol. 1965;41:85–91.PubMedCrossRefPubMedCentralGoogle Scholar
  23. De Smedt J, De Ley J. Intra- and intergeneric similarities of Agrobacterium ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol. 1977;27:222–40.CrossRefGoogle Scholar
  24. DeLong EF, Pace NR. Environmental diversity of bacteria and archaea. Syst Biol. 2001;50(4):470–8.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Di Giulio M. The universal ancestor and the ancestor of bacteria were hyperthermophiles. J Mol Evol. 2003;57(6):721–30.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dodd MS, Papineau D, Grenne T, Slack JF, Rittner M, Pirajno F, O’Neil J, Little CTS. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature. 2017;543:60–4.PubMedCrossRefPubMedCentralGoogle Scholar
  27. Doignon-Bourcier F, Sy A, Willems A, Torck U, Dreyfus B, Gillis M, de Lajudie P. Diversity of bradyrhizobia from 27 tropical Leguminosae species native of Senegal. Syst Appl Microbiol. 1999;22:647–61.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Dooley JJ, Harrison SP, Mytton LR, Dye M, Cresswell A, Skøt L, Beeching JR. Phylogenetic grouping and identification of Rhizobium isolates on the basis of random amplified polymorphic DNA profiles. Can J Microbiol. 1993;39:665–73.PubMedCrossRefGoogle Scholar
  29. Doolittle WF, Zhaxybayeva O. On the origin of prokaryotic species. Genome Res. 2009;19:744–56.PubMedCrossRefGoogle Scholar
  30. Dreyfus B, Garcia JL, Gillis M. Characterization of Azorhizobium cauhodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bateriol. 1988;38(1):89–98.CrossRefGoogle Scholar
  31. Dudman WF, Belbin L. Numerical taxonomic analysis of some strains of Rhizobium spp. that uses a qualitative coding of immunodiffusion reactions. Appl Environ Microbiol. 1988;54(7):1825–30.PubMedPubMedCentralGoogle Scholar
  32. Dunfield KE, Xavier LJC, Germida JJ. Identification of Rhizobium leguminosarum and Rhizobium sp. (Cicer) strains using a custom Fatty Acid Methyl Ester (FAME) profile library. J Appl Microbiol. 2001;86(1):78–86.CrossRefGoogle Scholar
  33. Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins MD, Gillis M. Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol. 1994;44:461–73.PubMedCrossRefGoogle Scholar
  34. Eloe-Fadrosh EA, Paez-Espino D, Jarett J, Dunfield PF, Hedlund BP, Dekas AE, Grasby SE, Brady AL, Dong H, Briggs BR, Li WJ, Goudeau D, Malmstrom R, Pati A, Pett-Ridge J, Rubin EM, Woyke T, Kyrpides NC, Ivanova NN. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat Commun. 2016;7:10476.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Errington J. L-form bacteria, cell walls and the origins of life. Open Biol. 2013;3(1):120143.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Evguenieva-Hackenberg E. Bacterial ribosomal RNA in pieces. Mol Microbiol. 2005;57:318–25.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Fred EB, Baldwin IL, Mc Coy E. Root nodule bacteria and leguminous plants, Studies in science, 5. Madison: University of Wisconsin Press; 1932. p. 343.Google Scholar
  38. Gao JL, Sun JG, Li Y, Wang ET, Chen WX. Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol. 1994;44:151–8.CrossRefGoogle Scholar
  39. Garrity GM. A new genomics-driven taxonomy of Bacteria and Archaea: are we there yet? J Clin Microbiol. 2016;54(8):1956–63.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilps SA, Young JPW. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol. 2001;51:2037–48.PubMedCrossRefGoogle Scholar
  41. Gillis M, Vandamme P, Vos PD, Swings J, Kersters K. Polyphasic taxonomy. Bergey’s manual of systematics of archaea and bacteria. Wiley, in association with Bergey’s Manual Trust; 2015. p. 1–10.Google Scholar
  42. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol. 2015;38(4):237–45.PubMedCrossRefGoogle Scholar
  43. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.PubMedCrossRefGoogle Scholar
  44. Graham PH. Antigenic affinities of the root-nodule bacteria of legumes. Antonie van Leeuwenhoek J Microbiol Serol. 1963;29:281–91.CrossRefGoogle Scholar
  45. Graham PH. The application of computer techniques to the taxonomy of the root-nodule bacteria of legumes. J Gen Microbiol. 1964;35:511–7.CrossRefGoogle Scholar
  46. Graham PH, Sadowsky MJ, Keyser HH, Barnet YM, Bradley RS, Cooper JE, De Ley DJ, Jarvis BDW, Roslycky EB, Strijdom BW, Young JPW. Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol. 1991;41(4):582–7.CrossRefGoogle Scholar
  47. Harrison SP, Mytton LR, Skot L, Dye M, Cresswell A. Characterisation of Rhizobium isolates by amplification of DNA polymorphisms using random primers. Can J Microbiol. 1992;38:1009–15.PubMedCrossRefGoogle Scholar
  48. Harrison PA, Berry P, Simpson G, Haslett JR, Blicharska M, Bucur M, Dunford R, Egoh B, Garcia Llorente M, Geamana N, Geertsema W, Lommelen E, Meiresonne L, Turkelboom F. Linkages between biodiversity attributes and ecosystem services: a systematic review. Ecosyst Serv. 2014;9:191–203.CrossRefGoogle Scholar
  49. Hennecke H, Kaluza K, Thony B, Furhmann M, Ludwig W, Stackebrandt E. Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen- fixing bacteria. Arch Microbiol. 1990;142:342–8.CrossRefGoogle Scholar
  50. Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54:427–32.CrossRefGoogle Scholar
  51. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75:3–35.CrossRefGoogle Scholar
  52. Ives AR, Carpente SR. Stability and diversity of ecosystems. Science. 2009;317:58–62.CrossRefGoogle Scholar
  53. Jarvis BDW, Gillis M, De Ley J. Intra- and intergeneric similarities between rRNA cistrons of Rhizobium and Bradyrhizobium species and some related bacteria. Int J Syst Bacteriol. 1986;36:129–38.CrossRefGoogle Scholar
  54. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP, Cleyet-Marel JC, Gillis M. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol. 1997;47:895–8.CrossRefGoogle Scholar
  55. Jordan DC. Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol. 1982;32:136–9.CrossRefGoogle Scholar
  56. Jordan DC, Allen ON. Family Rhizobiaceae. In: Buchanan RE, Gibbons NE, editors. Bergey’s manual of determinative bacteriology. 8th ed. Baltimore: Williams & Wilkins; 1974. p. 261–7.Google Scholar
  57. Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1929–40.CrossRefGoogle Scholar
  58. Ladha JK, So RB. Numerical taxonomy of photosynthetic rhizobia nodulating Aeschynomene species. Int J Syst Bacteriol. 1994;44(1):62–73.CrossRefGoogle Scholar
  59. Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P, Mazurier SI, Rigottier-Gois L, Amarger N. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol. 1996;62(6):2029–36.PubMedPubMedCentralGoogle Scholar
  60. Landenmark HKE, Forgan DH, Cockell CS. An estimate of the total DNA in the biosphere. PLoS Biol. 2015;13(6):e1002168.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lieberman MT, Mallory LM, Simkins S, Alexander M. Numerical taxonomic analysis of cross-inoculation patterns of legumes and Rhizobium. Plant Soil. 1985;84:225–44.CrossRefGoogle Scholar
  62. Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A. 2016;113:5970–5.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Loreau M, de Mazancourt C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett. 2013;16(S1):106–15.PubMedCrossRefGoogle Scholar
  64. Martens M, Dawyndt P, Coopman R, Gillis M, De Vos P, Willems A. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol. 2008;58:200–14.PubMedCrossRefGoogle Scholar
  65. Meier-Kolthoff JP, Auch AF, Klenk HP, Goeker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:60.CrossRefGoogle Scholar
  66. Moffet ML, Colwell RR. Adansonian analysis of the Rhizobiaceae. J Gen Microbiol. 1968;51:245–66.CrossRefGoogle Scholar
  67. Molouba F, Lorquin J, Willems A, Hoste B, Giraud E, Dreyfus B, Gillis M, de Lajudie P, Masson-Boivin C. Photosynthetic bradyrhizobia from Aeschynomene spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group. Appl Environ Microbiol. 1999;65(7):3084–94.PubMedPubMedCentralGoogle Scholar
  68. Mousavi SA, Österman J, Wahlberg N, Nesme X, Lavire C, Vial L, Paulin L, de Lajudie P, Lindström K. Phylogeny of the RhizobiumAllorhizobiumAgrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol. 2014;37(3):208–15.CrossRefGoogle Scholar
  69. Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol. 2015;38(2):84–90.CrossRefGoogle Scholar
  70. Murray RGE, Schleifer KH. Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol. 1994;44:174–6.PubMedCrossRefGoogle Scholar
  71. Naeem S, Prager C, Weeks B, Varga A, Flynn DFB, Griffin K, Muscarella R, Palmer M, Wood S, Schuster W. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory’s impact on plant biodiversity. Proc Biol Sci. 2016;283(1844):20153005.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Novikova NI, Pavlova EA, Vorobjev NI, Limeshchenko EV. Numerical taxonomy of Rhizobium strains from legumes of the temperate zone. Int J Syst Bacteriol. 1994;44(4):734–42.CrossRefGoogle Scholar
  73. Ormeño-Orrillo E, Servín-Garcidueñas LE, Rogel MA, González V, Peralta H, Mora J, Martínez-Romero J, Martínez-Romero E. Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Syst Appl Microbiol. 2015;38(4):287–91.PubMedCrossRefGoogle Scholar
  74. Pace NR. Mapping the tree of life: progress and prospects. Microbiol Mol Biol Rev. 2009;73:565–76.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Parker J. Rhizobium. In: Brenner S, Miller JH, editors. Encyclopedia of genetics. San Diego: Elsevier Science Inc; 2001. p. 1715–6.CrossRefGoogle Scholar
  76. Parker CT, Tindall BJ, Garrity GM. International code of nomenclature of prokaryotes prokaryotic code (2008 revision). Int J Syst Evol Microbiol. 2019;69(1A):S1–S111.CrossRefGoogle Scholar
  77. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, Hugenholtz P. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36(10):996–1004.  https://doi.org/10.1038/nbt.4229.CrossRefPubMedGoogle Scholar
  78. Pike LJ, Viciani E, Kumar N. Microbial diversity knows no borders. Nat Rev Microbiol. 2018;16:66.PubMedCrossRefGoogle Scholar
  79. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A, Kumari H, Jit S, Gupta SK, Khanna M, Lal R. Polyphasic approach of bacterial classification – an overview of recent advances. Indian J Microbiol. 2007;47(2):98–108.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, Oren A, Zhang Y-Z. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol. 2014;196(12):2210–5.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database Issue):D590–6.PubMedGoogle Scholar
  82. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A. 2009;106:19126–31.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Román-Ponce B, Zhang YJ, Vásquez-Murrieta MS, Sui XH, Chen WF, Alberto Padilla JC, Guo XW, Gao JL, Yan J, Wei GH, Wang ET. Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol. 2016;66(1):398–406.PubMedCrossRefGoogle Scholar
  84. Rosselló-Mora R. DNA-DNA reassociation methods applied to microbial taxonomy and their critical evaluation. In: Stackebrandt E, editor. Molecular identification, systematics, and population structure of prokaryotes. Berlin/Heidelberg: Springer; 2006.Google Scholar
  85. Rosselló-Mora R, Amann R. The species concept for prokaryotes. FEMS Microbiol Rev. 2001;25:39–67.PubMedCrossRefGoogle Scholar
  86. Rossi-Tamisier M, Benamar S, Raoult D, Fournier PE. Cautionary tale of using 16S rRNA gene sequence similarity values in identification of human-associated bacterial species. Int J Syst Evol Microbiol. 2015;65(6):1929–34.PubMedCrossRefGoogle Scholar
  87. Sajnaga E, Malek W. Numerical taxonomy of Sarothamnus scoparius rhizobia. Curr Microbiol. 2001;42:26–31.PubMedCrossRefGoogle Scholar
  88. Schmidt AR, Schäfer U. Leptotrichites resinatus new genus and species: a fossil sheathed bacterium in alpine cretaceous amber. J Paleontol. 2005;79(1):175–84.CrossRefGoogle Scholar
  89. Schopf JW. Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc Natl Acad Sci U S A. 1994;91(15):6735–42.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Sneath PHA. Thirty years of numerical taxonomy. Syst Biol. 1995;44(3):281–98.CrossRefGoogle Scholar
  91. So RB, Ladha JK, Young JPW. Photosynthetic symbionts of Aeschynomene spp form a cluster with bradyrhizobia on the basis of fatty-acid and ribosomal-RNA analyses. Int J Syst Bacteriol. 1994;44(3):392–403.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152–5.Google Scholar
  93. Staley JT. The bacterial species dilemma and the genomic-phylogenetic species concept. Philos Trans R Soc Lond Ser B Biol Sci. 2006;361:1899–909.CrossRefGoogle Scholar
  94. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol. 2001;183:214–20.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Terefework Z, Kaijalainen S, Lindström K. AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol. 2001;91(2–3):169–80.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL. Microbial genomic taxonomy. BMC Genomics. 2013;14:913.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tindall BJ, Rosselló-Móra R, Busse HJ, Ludwig W, Kämpferb P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–66.PubMedCrossRefPubMedCentralGoogle Scholar
  98. ‘tMannetje L. A re-examination of the taxonomy of the genus Rhizobium and related genera using numerical analysis. Antonie Van Leeuwenhoek. 1967;33(1):477–91.CrossRefGoogle Scholar
  99. Tong W, Li X, Hou Y, Zhang L, Cao Y, Wang E, Chen W, Tao S, Wei G. Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris. Syst Appl Microbiol. 2018;41(4):300–10.PubMedCrossRefPubMedCentralGoogle Scholar
  100. Van Berkum P, Eardly BD. Molecular evolutionary systematics of the Rhizobiaceae. In: Spaink HP, Kondorosi A, Hooykaas PJJ, editors. The Rhizobiaceae. Dordrecht: Kluwer Academic Publishers; 1998. p. 1–24.Google Scholar
  101. Vandamme P, Pot B, Gillis M, De Vos P, Kersters K, Swings J. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996;60(2):407–38.PubMedPubMedCentralGoogle Scholar
  102. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol. 1999;49(2):705–24.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Vincent JM, Humphrey BA. Taxonomically significant group antigens in Rhizobium. J Gen Microbiol. 1970;63:379–82.PubMedCrossRefPubMedCentralGoogle Scholar
  104. Vouga M, Greub G. Emerging bacterial pathogens: the past and beyond. Clin Microbiol Infect. 2016;22(1):12–21.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wang ET. Rhizobial classification by DNA-rRNA hybridization. PhD thesis, Beijing Agricultural University (in Chinese). 1990.Google Scholar
  106. Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martinez-Romero E. Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol. 1998;48:687–99.PubMedCrossRefPubMedCentralGoogle Scholar
  107. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martinez-Romero E. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol. 1999;49:51–65.CrossRefGoogle Scholar
  108. Wang Q, Zhu W, Wang E, Zhang L, Li X, Wang G. Genomic identification of rhizobia-related strains and threshold of ANI and core-genome for family, genus and species. Int J Environ Agric Res. 2016;2(6):76–86.Google Scholar
  109. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, et al. Report of the Ad Hoc Committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol. 1987;37(4):463–4.CrossRefGoogle Scholar
  110. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Marti WF. The physiology and habitat of the last universal common ancestor. Nat Microbiol. 2016;1(9):16116.PubMedCrossRefGoogle Scholar
  111. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95(12):6578–83.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Willcox WR, Lapage SP, Holmes B. A review of numerical methods in bacterial identification. Antonie Van Leeuwenhoek. 1980;46(3):233–99.PubMedCrossRefGoogle Scholar
  113. Willems A. The taxonomy of rhizobia: an overview. Plant Soil. 2006;287:3–14.CrossRefGoogle Scholar
  114. Wilson JK. Over five hundred reasons for abandoning the cross-inoculation groups of legumes. Soil Sci. 1944;58:61–70.CrossRefGoogle Scholar
  115. Wilson EO. The diversity of life. Cambridge, MA: Harvard Press; 1992. p. 424.Google Scholar
  116. Woese CR. Bacterial evolution. Microbiol Rev. 1987;51:221–71.PubMedPubMedCentralGoogle Scholar
  117. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains archaea, Bacteria, and Eucarya. Proc Natl Acad Sci. 1990;87(12):4576–9.PubMedCrossRefGoogle Scholar
  118. Yan J, Yan H, Liu LX, Chen WF, Zhang XX, Verástegui-Valdés MM, Wang ET, Han XZ. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol. 2017;199(1):97–104.PubMedCrossRefGoogle Scholar
  119. Yanagi M, Yamasato K. Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett. 1993;107(1):115–20.PubMedCrossRefGoogle Scholar
  120. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, Schleifer KH, Ludwig W, Glockner FO, Rosselló-Móra R. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol. 2008;31:241–50.PubMedCrossRefGoogle Scholar
  121. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman WB, Euzéby J, Amann R, Rosselló-Móra R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.PubMedCrossRefGoogle Scholar
  122. Zhang W, Du P, Zheng H, Yu W, Wan L, Chen C. Whole-genome sequence comparison as a method for improving bacterial species definition. J Gen Appl Microbiol. 2014;60(2):75–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • En Tao Wang
    • 1
  • J. Peter W. Young
    • 2
  1. 1.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MexicoMexico
  2. 2.Department of BiologyUniversity of YorkYorkUK

Personalised recommendations