Perfluorinated Compound Exposure and Health Effects in Humans

  • Jialin Li
  • Renshan GeEmail author


Perfluorinated compounds (PFCs) include a large group of anthropogenic fluorinated organic substances. This chapter reviews the current understanding of the sources and trends of human exposure to PFCs and evidences from both animal experiments and epidemiological studies about their effects on immunological and metabolic functions, neurodevelopment, reproduction, and children development. Humans can be exposed to PFCs by ingesting contaminated drinking water and seafood, inhaling polluted indoor air, and other contaminated media, the way of exposure is wide and undetectable. The structure and physicochemical properties of PFCs can greatly affect their environmental behaviors and the safety of emerging perfluorobutane sulfonates (PFBS) and other substances cannot be ignored. Therefore, it is necessary to study health effects of various PFCs and their alternatives, and analyze the different environmental behaviors of isomers and homologues of PFCs.


Perfluorinated compounds Exposure pathways Health effect 


  1. 1.
    Ateia M, Maroli A, Tharayil N et al (2019) The overlooked short- and ultrashort-chain poly- and perfluorinated substances: a review [J]. Chemosphere 220:866–882CrossRefGoogle Scholar
  2. 2.
    Robel AE, Marshall K, Dickinson M et al (2017) Closing the mass balance on fluorine on papers and textiles [J]. Environ Sci Technol 51(16):9022–9032PubMedCrossRefGoogle Scholar
  3. 3.
    Sunderland EM, Hu XDC, Dassuncao C et al (2019) A review of the pathways of human exposure to poly- and perfluoroalkyl substances (pfass) and present understanding of health effects [J]. J Exposure Sci Environ Epidemiol 29(2):131–147CrossRefGoogle Scholar
  4. 4.
    Christensen KY, Raymond M, Blackowicz M et al (2017) Perfluoroalkyl substances and fish consumption [J]. Environ Res 154:145–151PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hu XDC, Dassuncao C, Zhang XM et al (2018) Can profiles of poly- and perfluoroalkyl substances (pfass) in human serum provide information on major exposure sources? [J]. Environ Health 17Google Scholar
  6. 6.
    Dassuncao C, Hu XC, Nielsen F et al (2018) Shifting global exposures to poly- and per- fluoroalkyl substances (pfass) evident in longitudinal birth cohorts from a seafood-consuming population [J]. Environ Sci Technol 52:3738–3747PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Trudel D, Horowitz L, Wormuth M et al (2008) Estimating consumer exposure to pfos and pfoa [J]. Risk Anal 28(2):251–269PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Vestergren R, Cousins IT (2009) Tracking the pathways of human exposure to perfluorocarboxylates [J]. Environ Sci Technol 43(15):5565–5575PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Haug LS, Huber S, Becher G et al (2011) Characterisation of human exposure pathways to perfluorinated compounds - comparing exposure estimates with biomarkers of exposure [J]. Environ Int 37(4):687–693PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Lorber M, Egeghy PP (2011) Simple intake and pharmacokinetic modeling to characterize exposure of americans to perfluoroctanoic acid, pfoa [J]. Environ Sci Technol 45(19):8006–8014PubMedCrossRefGoogle Scholar
  11. 11.
    Tian Z, Kim SK, Shoeib M et al (2016) Human exposure to per- and polyfluoroalkyl substances (pfass) via house dust in Korea: implication to exposure pathway [J]. Sci Total Environ 553:266–275PubMedCrossRefGoogle Scholar
  12. 12.
    Shan GQ, Wang Z, Zhou LQ et al (2016) Impacts of daily intakes on the isomeric profiles of perfluoroalkyl substances (pfass) in human serum [J]. Environ Int 89-90:62–70PubMedCrossRefGoogle Scholar
  13. 13.
    Gebbink WA, Berger U, Cousins IT (2015) Estimating human exposure to pfos isomers and pfca homologues: the relative importance of direct and indirect (precursor) exposure [J]. Environ Int 74:160–169PubMedCrossRefGoogle Scholar
  14. 14.
    Egeghy PP, Lorber M (2011) An assessment of the exposure of americans to perfluorooctane sulfonate: a comparison of estimated intake with values inferred from nhanes data [J]. J Expo Sci Environ Epidemiol 21(2):150–168PubMedCrossRefGoogle Scholar
  15. 15.
    Wen B, Wu Y, Zhang H et al (2016) The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (pfos) and perfluorooctanoate (pfoa) in plants grown in biosolids-amended soils [J]. Environ Pollut (Barking, Essex: 1987) 216:682–688CrossRefGoogle Scholar
  16. 16.
    Begley TH, Hsu W, Noonan G et al (2008) Migration of fluorochemical paper additives from food-contact paper into foods and food simulants [J]. Food Addit Contam 25(3):384–390CrossRefGoogle Scholar
  17. 17.
    Yamashita N, Kannan K, Taniyasu S et al (2005) A global survey of perfluorinated acids in oceans [J]. Mar Pollut Bull 51(8–12):658–668PubMedCrossRefGoogle Scholar
  18. 18.
    Scott BF, Macdonald RW, Kannan K et al (2005) Trifluoroacetate profiles in the arctic, Atlantic, and pacific oceans [J]. Environ Sci Technol 39(17):6555–6560PubMedCrossRefGoogle Scholar
  19. 19.
    Wan Y, Wang SL, Cao XZ et al (2017) Perfluoroalkyl acids (pfaas) in water and sediment from the coastal regions of Shandong peninsula, China[J]. Environ Monit Assess 189(3):100PubMedCrossRefGoogle Scholar
  20. 20.
    Ahrens L, Felizeter S, Sturm R et al (2009) Polyfluorinated compounds in waste water treatment plant effluents and surface waters along the river elbe, Germany [J]. Mar Pollut Bull 58(9):1326–1333PubMedCrossRefGoogle Scholar
  21. 21.
    Wang BB, Cao MH, Zhu HD et al (2013) Distribution of perfluorinated compounds in surface water from hanjiang river in Wuhan, China [J]. Chemosphere 93(3):468–473PubMedCrossRefGoogle Scholar
  22. 22.
    Castiglioni S, Valsecchi S, Polesello S et al (2015) Sources and fate of perfluorinated compounds in the aqueous environment and in drinking water of a highly urbanized and industrialized area in Italy [J]. J Hazard Mater 282:51–60PubMedCrossRefGoogle Scholar
  23. 23.
    Sharma BM, Bharat GK, Tayal S et al (2016) Perfluoroalkyl substances (pfas) in river and ground/drinking water of the ganges river basin: emissions and implications for human exposure [J]. Environ Pollut 208:704–713PubMedCrossRefGoogle Scholar
  24. 24.
    Gebbink WA, Van Asseldonk L, Van Leeuwen SPJ (2017) Presence of emerging per- and polyfluoroalkyl substances (pfass) in river and drinking water near a fluorochemical production plant in the Netherlands [J]. Environ Sci Technol 51(19):11057–11065PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Scott BF, Spencer C, Mabury SA et al (2006) Poly and perfluorinated carboxylates in north american precipitation [J]. Environ Sci Technol 40(23):7167–7174PubMedCrossRefGoogle Scholar
  26. 26.
    Taniyasu S, Kannan K, Yeung LWY et al (2008) Analysis of trifluoroacetic acid and other short-chain perfluorinated acids (c2-c4) in precipitation by liquid chromatography-tandem mass spectrometry: comparison to patterns of long-chain perfluorinated acids (c5-c18) [J]. Anal Chim Acta 619(2):221–230PubMedCrossRefGoogle Scholar
  27. 27.
    Murakami M, Shinohara H, Takada H (2009) Evaluation of wastewater and street runoff as sources of perfluorinated surfactants (pfss) [J]. Chemosphere 74(4):487–493PubMedCrossRefGoogle Scholar
  28. 28.
    Kim SK, Kannan K (2007) Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes [J]. Environ Sci Technol 41(24):8328–8334PubMedCrossRefGoogle Scholar
  29. 29.
    Wang QY, Wang XM, Ding X (2014) Rainwater trifluoroacetic acid (tfa) in Guangzhou, South China: levels, wet deposition fluxes and source implication [J]. Sci Total Environ 468:272–279PubMedCrossRefGoogle Scholar
  30. 30.
    Sun R, Wu MH, Tang L et al (2018) Perfluorinated compounds in surface waters of shanghai, China: source analysis and risk assessment [J]. Ecotoxicol Environ Saf 149:88–95PubMedCrossRefGoogle Scholar
  31. 31.
    Paustenbach DJ, Panko JM, Scott PK et al (2007) A methodology for estimating human exposure to perfluorooctanoic acid (pfoa): a retrospective exposure assessment of a community (1951-2003) [J]. J Toxicol Environ Health-Part A-Curr Issues 70(1):28–57CrossRefGoogle Scholar
  32. 32.
    Skutlarek D, Exner M, Farber H (2006) Perfluorinated surfactants in surface and drinking waters [J]. Environ Sci Pollut Res Int 13(5):299–307PubMedCrossRefGoogle Scholar
  33. 33.
    Thompson J, Eaglesham G, Mueller J (2011) Concentrations of pfos, pfoa and other perfluorinated alkyl acids in australian drinking water [J]. Chemosphere 83(10):1320–1325PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Barzen-Hanson KA, Field JA (2015) Discovery and implications of c-2 and c-3 perfluoroalkyl sulfonates in aqueous film-forming foams and groundwater [J]. Environ Sci Technol Lett 2(4):95–99CrossRefGoogle Scholar
  35. 35.
    Xiao X, Ulrich BA, Chen B et al (2017) Sorption of poly- and perfluoroalkyl substances (pfass) relevant to aqueous film-forming foam (afff)-impacted groundwater by biochars and activated carbon [J]. Environ Sci Technol 51(11):6342–6351PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Gsh (2015) Globally harmonized system of classification and labelling of chemicals(ghs).First revised edition. United Nations: Nations Publication:ST/SG/AC.10/30/Rev.6Google Scholar
  37. 37.
    Brieger A, Bienefeld N, Hasan R et al (2011) Impact of perfluorooctanesulfonate and perfluorooctanoic acid on human peripheral leukocytes [J]. Toxicol In Vitro 25(4):960–968PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Grandjean P, Andersen EW, Budtz-Jorgensen E et al (2012) Serum vaccine antibody concentrations in children exposed to perfluorinated compounds[J]. JAMA 307(4):391–397PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yang Q, Wang W, Liu C et al (2016) Effect of pfos on glucocorticoid-induced changes in human decidual stromal cells in the first trimester of pregnancy [J]. Reprod Toxicol 63:142–150PubMedCrossRefGoogle Scholar
  40. 40.
    Steenland K, Fletcher T, Savitz DA (2010) Epidemiologic evidence on the health effects of perfluorooctanoic acid (pfoa) [J]. Environ Health Perspect 118(8):1100–1108PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kennedy GL, Butenhoff JL, Olsen GW et al (2004) The toxicology of perfluorooctanoate[J]. Crit Rev Toxicol 34(4):351–384PubMedCrossRefGoogle Scholar
  42. 42.
    Gump BB, Wu Q, Dumas AK et al (2011) Perfluorochemical (pfc) exposure in children: associations with impaired response inhibition [J]. Environ Sci Technol 45(19):8151–8159PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Chen MH, Ha EH, Wen TW et al (2012) Perfluorinated compounds in umbilical cord blood and adverse birth outcomes [J]. PLoS One 7(8)PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chen MH, Ha EH, Liao HF et al (2013) Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age[J]. Epidemiology 24(6):800–808PubMedCrossRefGoogle Scholar
  45. 45.
    Goudarzi H, Nakajima S, Ikeno T et al (2016) Prenatal exposure to perfluorinated chemicals and neurodevelopment in early infancy: the Hokkaido study [J]. Sci Total Environ 541:1002–1010PubMedCrossRefGoogle Scholar
  46. 46.
    Hoffman K, Webster TF, Weisskopf MG et al (2010) Exposure to polyfluoroalkyl chemicals and attention deficit/hyperactivity disorder in U.S. children 12-15 years of age [J]. Environ Health Perspect 118(12):1762–1767PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Olsen GW, Gillard FD, Burlew MM et al (1998) An epidemiologic investigation of reproductive hormones in men with occupational exposure to perfluorooctanoic acid [J]. J Occup Environ Med 40(7):614–622PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Toft G, Jonsson BA, Lindh CH et al (2012) Exposure to perfluorinated compounds and human semen quality in arctic and european populations [J]. Hum Reprod 27(8):2532–2540PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Joensen UN, Bossi R, Leffers H et al (2009) Do perfluoroalkyl compounds impair human semen quality? [J]. Environ Health Perspect 117(6):923–927PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Raymer JH, Michael LC, Studabaker WB et al (2012) Concentrations of perfluorooctane sulfonate (pfos) and perfluorooctanoate (pfoa) and their associations with human semen quality measurements [J]. Reprod Toxicol 33(4):419–427PubMedCrossRefGoogle Scholar
  51. 51.
    White SS, Fenton SE, Hines EP (2011) Endocrine disrupting properties of perfluorooctanoic acid [J]. J Steroid Biochem Mol Biol 127(1–2):16–26PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Chang SC, Ehresman DJ, Bjork JA et al (2009) Gestational and lactational exposure to potassium perfluorooctanesulfonate (k+pfos) in rats: Toxicokinetics, thyroid hormone status, and related gene expression [J]. Reprod Toxicol 27(3–4):387–399PubMedCrossRefGoogle Scholar
  53. 53.
    Stanifer JW, Stapleton HM, Souma T et al (2018) Perfluorinated chemicals as emerging environmental threats to kidney health a scoping review [J]. Clin J Am Soc Nephrol 13(10):1479–1492PubMedPubMedCentralGoogle Scholar
  54. 54.
    Lieder PH, York RG, Hakes DC et al (2009) A two-generation oral gavage reproduction study with potassium perfluorobutanesulfonate (k+pfbs) in Sprague dawley rats [J]. Toxicology 259(1–2):33–45PubMedCrossRefGoogle Scholar
  55. 55.
    Newsted JL, Beach SA, Gallagher SP et al (2008) Acute and chronic effects of perfluorobutane sulfonate (pfbs) on the mallard and northern bobwhite quail[J]. Arch Environ Contam Toxicol 54(3):535–545PubMedCrossRefGoogle Scholar
  56. 56.
    Slotkin TA, Mackillop EA, Melnick RL et al (2008) Developmental neurotoxicity of perfluorinated chemicals modeled in vitro [J]. Environ Health Perspect 116(6):716–722PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Oldham ED, Xie W, Farnoud AM et al (2012) Disruption of phosphatidylcholine monolayers and bilayers by perfluorobutane sulfonate [J]. J Phys Chem B 116(33):9999–10007PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Chengelis CP, Kirkpatrick JB, Radovsky A et al (2009) A 90-day repeated dose oral (gavage) toxicity study of perfluorohexanoic acid (pfhxa) in rats (with functional observational battery and motor activity determinations) [J]. Reprod Toxicol 27(3–4):342–351PubMedCrossRefGoogle Scholar
  59. 59.
    Wang ZY, Cousins IT, Scheringer M et al (2015) Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (pfaas) and their precursors: status quo, ongoing challenges and possible solutions [J]. Environ Int 75:172–179PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Public HealthFudan UniversityShanghaiChina
  2. 2.Key Laboratory of Public Health Safety, Ministry of EducationFudan UniversityShanghaiChina
  3. 3.The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina

Personalised recommendations