Flame Retardants: Exposure, Biomarkers, and Health Risks

  • Yuting Jin
  • Shangqin Chen


Flame retardants have been extensively used in various fields of production and daily life, such as aerospace, transportation, and interior decoration, to ensure fire safety. They are mainly divided into inorganic, halogenated organic, nitrogen-containing, and phosphorus-containing compounds, among which, brominated flame retardants and organophosphorous flame retardants are the most commonly used flame retardants. However, with reports toward adverse effects of flame retardants on human being gradually increasing, more and more attention has been paid to the health risks caused by the use of flame retardants. This chapter introduces the exposure of flame retardants to environment and human, as well as sensitive biomarkers of flame retardants, and emphatically analyzes the toxic effects of flame retardants on health risks including endocrine disruption, neurotoxicity, reproductive inability, immunotoxicity, hepatotoxicity, lung toxicity, carcinogenesis, preterm birth, developmental retardation, and children behavioral problems.


Flame retardants Environment exposure Biomarkers Health risk 


  1. 1.
    Iqbal M, Syed JH, Katsoyiannis A et al (2017) Legacy and emerging flame retardants (FRs) in the freshwater ecosystem: a review [J]. Environ Res 152:26–42PubMedCrossRefGoogle Scholar
  2. 2.
    Cristale J, Katsoyiannis A, Sweetman AJ et al (2013) Occurrence and risk assessment of organophosphorus and brominated flame retardants in the river Aire (UK) [J]. Environ Pollut 179:194–200PubMedCrossRefGoogle Scholar
  3. 3.
    Garcia-Lopez M, Rodriguez I, Cela R (2010) Mixed-mode solid-phase extraction followed by liquid chromatography-tandem mass spectrometry for the determination of tri- and di-substituted organophosphorus species in water samples [J]. J Chromatogr A 1217(9):1476–1484PubMedCrossRefGoogle Scholar
  4. 4.
    Martinez-Carballo E, Gonzalez-Barreiro C, Sitka A et al (2007) Determination of selected organophosphate esters in the aquatic environment of Austria [J]. Sci Total Environ 388(1–3):290–299PubMedCrossRefGoogle Scholar
  5. 5.
    Bogdal C, Schmid P, Kohler M et al (2008) Sediment record and atmospheric deposition of brominated flame retardants and organochlorine compounds in Lake Thun, Switzerland: lessons from the past and evaluation of the present [J]. Environ Sci Technol 42(18):6817–6822PubMedCrossRefGoogle Scholar
  6. 6.
    Cristale J, Garcia Vazquez A, Barata C et al (2013) Priority and emerging flame retardants in rivers: occurrence in water and sediment, daphnia magna toxicity and risk assessment [J]. Environ Int 59:232–243PubMedCrossRefGoogle Scholar
  7. 7.
    Liu R, Nelson DO, Hurley S et al (2016) Association between serum polybrominated diphenyl ether levels and residential proximity to solid-waste facilities [J]. Environ Sci Technol 50(7):3945–3953PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Luigi V, Giuseppe M, Claudio R (2015) Emerging and priority contaminants with endocrine active potentials in sediments and fish from the River Po (Italy) [J]. Environ Sci Pollut Res Int 22(18):14050–14066PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang X, Diamond ML, Robson M et al (2011) Sources, emissions, and fate of polybrominated diphenyl ethers and polychlorinated biphenyls indoors in Toronto, Canada [J]. Environ Sci Technol 45(8):3268–3274PubMedCrossRefGoogle Scholar
  10. 10.
    Ni K, Lu Y, Wang T et al (2013) A review of human exposure to polybrominated diphenyl ethers (PBDEs) in China [J]. Int J Hyg Environ Health 216(6):607–623PubMedCrossRefGoogle Scholar
  11. 11.
    Hites RA (2004) Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations [J]. Environ Sci Technol 38(4):945–956PubMedCrossRefGoogle Scholar
  12. 12.
    Jianxian S, Hui P, Jianying H (2015) Temporal trends of polychlorinated biphenyls, polybrominated diphenyl ethers, and perfluorinated compounds in Chinese sturgeon (Acipenser sinensis) eggs (1984-2008) [J]. Environ Sci Technol 49(3):1621–1630PubMedCrossRefGoogle Scholar
  13. 13.
    Gabrielsen KM, Krokstad JS, Villanger GD et al (2015) Thyroid hormones and deiodinase activity in plasma and tissues in relation to high levels of organohalogen contaminants in East Greenland polar bears (Ursus maritimus) [J]. Environ Res 136:413–423PubMedCrossRefGoogle Scholar
  14. 14.
    Persson S, Magnusson U (2015) Environmental pollutants and alterations in the reproductive system in wild male mink (Neovison vison) from Sweden [J]. Chemosphere 120:237–245PubMedCrossRefGoogle Scholar
  15. 15.
    Zhao Y, Song Q, Cao Z et al (2018) Umbilical cord blood PBDEs concentrations in relation to placental size at birth [J]. Chemosphere 201:20–24PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang J, Chen L, Xiao L et al (2017) Polybrominated diphenyl ether concentrations in human breast milk specimens worldwide [J]. Epidemiology 28(Suppl 1):S89–s97PubMedCrossRefGoogle Scholar
  17. 17.
    Chen Y, Wang X, Li Y et al (2015) Persistent organic pollutants in matched breast milk and infant faeces samples [J]. Chemosphere 118:309–314PubMedCrossRefGoogle Scholar
  18. 18.
    Zhang X, Zhang K, Yang D et al (2014) Polybrominated biphenyl ethers in breast milk and infant formula from Shanghai, China: temporal trends, daily intake, and risk assessment [J]. Sci Total Environ 497-498:508–515PubMedCrossRefGoogle Scholar
  19. 19.
    Shin MY, Lee S, Kim HJ et al (2016) Polybrominated diphenyl ethers in maternal serum, breast milk, umbilical cord serum, and house dust in a south korean birth panel of mother-neonate pairs [J]. Int J Environ Res Public Health 13(8):767PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Guillette LJ Jr, Iguchi T (2012) Ecology. Life in a contaminated world [J]. Science 337(6102):1614–1615PubMedCrossRefGoogle Scholar
  21. 21.
    Saillenfait AM, Ndaw S, Robert A et al (2018) Recent biomonitoring reports on phosphate ester flame retardants: a short review [J]. Arch Toxicol 92(9):2749–2778PubMedCrossRefGoogle Scholar
  22. 22.
    Zhao F, Kang Q, Zhang X et al (2019) Urinary biomarkers for assessment of human exposure to monomeric aryl phosphate flame retardants [J]. Environ Int 124:259–264PubMedCrossRefGoogle Scholar
  23. 23.
    Hoffman K, Fang M, Horman B et al (2014) Urinary tetrabromobenzoic acid (TBBA) as a biomarker of exposure to the flame retardant mixture Firemaster(R) 550 [J]. Environ Health Perspect 122(9):963–969PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Bowers WJ, Wall PM, Nakai JS et al (2015) Behavioral and thyroid effects of in utero and lactational exposure of Sprague-Dawley rats to the polybrominated diphenyl ether mixture DE71 [J]. Neurotoxicology and teratology 52(Pt B):127–142PubMedCrossRefGoogle Scholar
  25. 25.
    Cao J, Lin Y, Guo LH et al (2010) Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins [J]. Toxicology 277(1–3):20–28PubMedCrossRefGoogle Scholar
  26. 26.
    Lu D, Jin Y, Feng C et al (2017) Multi-analyte method development for analysis of brominated flame retardants (BFRs) and PBDE metabolites in human serum [J]. Anal Bioanal Chem 409(22):5307–5317PubMedCrossRefGoogle Scholar
  27. 27.
    Ahmed OM, El-Gareib AW, El-Bakry AM et al (2008) Thyroid hormones states and brain development interactions [J]. Int J Dev Neurosci 26(2):147–209PubMedCrossRefGoogle Scholar
  28. 28.
    Boas M, Feldt-Rasmussen U, Skakkebaek NE et al (2006) Environmental chemicals and thyroid function [J]. Eur J Endocrinol 154(5):599–611PubMedCrossRefGoogle Scholar
  29. 29.
    Hamers T, Kamstra JH, Sonneveld E et al (2006) In vitro profiling of the endocrine-disrupting potency of brominated flame retardants [J]. Toxicol Sci 92(1):157–173PubMedCrossRefGoogle Scholar
  30. 30.
    Gosavi RA, Knudsen GA, Birnbaum LS et al (2013) Mimicking of estradiol binding by flame retardants and their metabolites: a crystallographic analysis [J]. Environ Health Perspect 121(10):1194–1199PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Butt CM, Stapleton HM (2013) Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics [J]. Chem Res Toxicol 26(11):1692–1702PubMedCrossRefGoogle Scholar
  32. 32.
    Patisaul HB, Roberts SC, Mabrey N et al (2013) Accumulation and endocrine disrupting effects of the flame retardant mixture Firemaster(R) 550 in rats: an exploratory assessment [J]. J Biochem Mol Toxicol 27(2):124–136PubMedCrossRefGoogle Scholar
  33. 33.
    Hoffman K, Sosa JA, Stapleton HM (2017) Do flame retardant chemicals increase the risk for thyroid dysregulation and cancer? [J]. Curr Opin Oncol 29(1):7–13PubMedCrossRefGoogle Scholar
  34. 34.
    Vazzana N, Santilli F, Sestili S et al (2011) Determinants of increased cardiovascular disease in obesity and metabolic syndrome [J]. Curr Med Chem 18(34):5267–5280PubMedCrossRefGoogle Scholar
  35. 35.
    Prasad H, Ryan DA, Celzo MF et al (2012) Metabolic syndrome: definition and therapeutic implications [J]. Postgrad Med 124(1):21–30PubMedCrossRefGoogle Scholar
  36. 36.
    Sherling DH, Perumareddi P, Hennekens CH (2017) Metabolic syndrome [J]. J Cardiovasc Pharmacol Ther 22(4):365–367PubMedCrossRefGoogle Scholar
  37. 37.
    Darbre PD (2017) Endocrine disruptors and obesity[J]. Curr Obes Rep 6(1):18–27PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Chen X, Huang C, Wang X et al (2012) BDE-47 disrupts axonal growth and motor behavior in developing zebrafish [J]. Aquat Toxicol 120-121:35–44PubMedCrossRefGoogle Scholar
  39. 39.
    An J, Li S, Zhong Y et al (2011) The cytotoxic effects of synthetic 6-hydroxylated and 6-methoxylated polybrominated diphenyl ether 47 (BDE47) [J]. Environ Toxicol 26(6):591–599PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kuriyama SN, Talsness CE, Grote K et al (2005) Developmental exposure to low dose PBDE 99: effects on male fertility and neurobehavior in rat offspring [J]. Environ Health Perspect 113(2):149–154PubMedCrossRefGoogle Scholar
  41. 41.
    Abdelouahab N, Ainmelk Y, Takser L (2011) Polybrominated diphenyl ethers and sperm quality [J]. Reprod Toxicol 31(4):546–550PubMedCrossRefGoogle Scholar
  42. 42.
    Main KM, Kiviranta H, Virtanen HE et al (2007) Flame retardants in placenta and breast milk and cryptorchidism in newborn boys [J]. Environ Health Perspect 115(10):1519–1526PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Chao HR, Shy CG, Wang SL et al (2010) Impact of non-occupational exposure to polybrominated diphenyl ethers on menstruation characteristics of reproductive-age females [J]. Environ Int 36(7):728–735PubMedCrossRefGoogle Scholar
  44. 44.
    Li H, Su G, Zou M et al (2015) Effects of tris(1,3-dichloro-2-propyl) phosphate on growth, reproduction, and gene transcription of daphnia magna at environmentally relevant concentrations [J]. Environ Sci Technol 49(21):12975–12983PubMedCrossRefGoogle Scholar
  45. 45.
    Ashwood P, Schauer J, Pessah IN et al (2009) Preliminary evidence of the in vitro effects of BDE-47 on innate immune responses in children with autism spectrum disorders [J]. J Neuroimmunol 208(1–2):130–135PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Fernie KJ, Mayne G, Shutt JL et al (2005) Evidence of immunomodulation in nestling American kestrels (Falco sparverius) exposed to environmentally relevant PBDEs [J]. Environ Pollut 138(3):485–493PubMedCrossRefGoogle Scholar
  47. 47.
    Saquib Q, Siddiqui MA, Ahmed J et al (2016) Hazards of low dose flame-retardants (BDE-47 and BDE-32): influence on transcriptome regulation and cell death in human liver cells [J]. J Hazard Mater 308:37–49PubMedCrossRefGoogle Scholar
  48. 48.
    Araki A, Saito I, Kanazawa A et al (2014) Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants [J]. Indoor Air 24(1):3–15PubMedCrossRefGoogle Scholar
  49. 49.
    Betts KS (2015) Tracking alternative flame retardants: hand-to-mouth exposures in adults [J]. Environ Health Perspect 123(2):A44PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Darnerud PO (2003) Toxic effects of brominated flame retardants in man and in wildlife [J]. Environ Int 29(6):841–853PubMedCrossRefGoogle Scholar
  51. 51.
    Hardell L, Carlberg M, Hardell K et al (2007) Decreased survival in pancreatic cancer patients with high concentrations of organochlorines in adipose tissue [J]. Biomed Pharmacother 61(10):659–664PubMedCrossRefGoogle Scholar
  52. 52.
    Li ZH, Liu XY, Wang N et al (2012) Effects of decabrominated diphenyl ether (PBDE-209) in regulation of growth and apoptosis of breast, ovarian, and cervical cancer cells [J]. Environ Health Perspect 120(4):541–546PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hardell L, Lindstrom G, Van Bavel B et al (1998) Concentrations of the flame retardant 2,2′,4,4′-tetrabrominated diphenyl ether in human adipose tissue in swedish persons and the risk for non-Hodgkin's lymphoma[J]. Oncol Res 10(8):429–432PubMedGoogle Scholar
  54. 54.
    Schreder ED, Uding N, La Guardia MJ (2016) Inhalation a significant exposure route for chlorinated organophosphate flame retardants [J]. Chemosphere 150:499–504PubMedCrossRefGoogle Scholar
  55. 55.
    Leonetti C, Butt CM, Hoffman K et al (2016) Brominated flame retardants in placental tissues: associations with infant sex and thyroid hormone endpoints [J]. Environ Health 15(1):113PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhao Y, Ruan X, Li Y et al (2013) Polybrominated diphenyl ethers (PBDEs) in aborted human fetuses and placental transfer during the first trimester of pregnancy [J]. Environ Sci Technol 47(11):5939–5946PubMedCrossRefGoogle Scholar
  57. 57.
    Peltier MR, Koo HC, Getahun D et al (2015) Does exposure to flame retardants increase the risk for preterm birth? [J]. J Reprod Immunol 107:20–25PubMedCrossRefGoogle Scholar
  58. 58.
    Behnia F, Peltier MR, Saade GR et al (2015) Environmental pollutant polybrominated diphenyl ether, a flame retardant, induces primary amnion cell senescence [J]. Am J Reprod Immunol 74(5):398–406PubMedCrossRefGoogle Scholar
  59. 59.
    Lopez-Espinosa MJ, Costa O, Vizcaino E et al (2015) Prenatal exposure to polybrominated flame retardants and fetal growth in the INMA cohort (Spain) [J]. Environ Sci Technol 49(16):10108–10116PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Zhao Y, Liu P, Wang J et al (2016) Umbilical cord blood PBDEs concentrations are associated with placental DNA methylation [J]. Environ Int 97:1–6PubMedCrossRefGoogle Scholar
  61. 61.
    Herbstman JB, Sjodin A, Kurzon M et al (2010) Prenatal exposure to PBDEs and neurodevelopment [J]. Environ Health Perspect 118(5):712–719PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gascon M, Vrijheid M, Martinez D et al (2011) Effects of pre and postnatal exposure to low levels of polybromodiphenyl ethers on neurodevelopment and thyroid hormone levels at 4 years of age [J]. Environ Int 37(3):605–611PubMedCrossRefGoogle Scholar
  63. 63.
    Battle DE (2013) Diagnostic and statistical manual of mental disorders (DSM) [J]. CoDAS 25(2):191–192PubMedCrossRefGoogle Scholar
  64. 64.
    Braun JM, Kalkbrenner AE, Just AC et al (2014) Gestational exposure to endocrine-disrupting chemicals and reciprocal social, repetitive, and stereotypic behaviors in 4- and 5-year-old children: the HOME study [J]. Environ Health Perspect 122(5):513–520PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Hertz-Picciotto I, Bergman A, Fangstrom B et al (2011) Polybrominated diphenyl ethers in relation to autism and developmental delay: a case-control study [J]. Environ Health 10(1):1PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yuting Jin
    • 1
  • Shangqin Chen
    • 1
  1. 1.The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhouChina

Personalised recommendations