Advertisement

Exposure Assessment of Emerging Chemicals and Novel Screening Strategies

  • Qingyang Zhu
  • Haixia DaiEmail author
Chapter

Abstract

Persistent organic pollutants (POPs) commonly exist in various kinds of environmental mediums and can migrant into plant food sources and bioaccumulate in the fatty tissues of human body. Traditional approach to evaluate POPs in multiple biofluids is based on targeted analytic chemistry. Recently, the development of sophisticated analytical instruments (e.g., tandem mass spectrometry, MS–MS) has provided the opportunity to quantify and identify chemical compounds to achieve good sensitivity and selectivity. In this chapter, we discuss the current assessment tools of chemical pollutants, including classic targeted approaches and novel untargeted methods. Targeted biomonitoring studies typically focused on a specific group of interest chemicals such as phthalate, bisphenol A (BPA), and polybrominated diphenyl ethers (PBDEs). Recent studies tended to use noninvasive or less-invasive bio-matrices which could be accessible in sufficient amounts for the analysis and do not pose a health risk for the donor. There does not exist an ideal matrix for universal situations, but depending on the toxicokinetic of the targeted chemical. Exposome includes a series of quantitative and repeated metrics of both endogenous and exogenous exposures that describe, holistically, environmental influences or exposure over a lifetime. At the current stage, the exposome is still in its infancy. Many technical and statistical challenges remain unsolved. Combined with data mining, via a series of statistical approaches, exposome shows great potential in identifying markers that can further lead to targeted analyses.

Keywords

Persistent organic pollutants Exposure assessment Phthalates Bisphenol A Polybrominated diphenyl ethers Exposome 

References

  1. 1.
    Jones KC, De Voogt P (1999) Persistent organic pollutants (pops): state of the science[J]. Environ Pollut 100(1–3):209–221PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology[J]. Cancer Epidemiol Biomark Prev 14(8):1847–1850CrossRefGoogle Scholar
  3. 3.
    Wild CP (2012) The exposome: from concept to utility[J]. Int J Epidemiol 41(1):24–32PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Miller GW, Jones DP (2014) The nature of nurture: refining the definition of the exposome[J]. Toxicol Sci 137(1):1PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Jones DP (2016) Sequencing the exposome: a call to action[J]. Toxicol Rep 3:29–45PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Crinnion WJ (2010) The cdc fourth national report on human exposure to environmental chemicals: what it tells us about our toxic burden and how it assists environmental medicine physicians[J]. Altern Med Rev 15(2):101–108PubMedPubMedCentralGoogle Scholar
  7. 7.
    Meeker JD, Sathyanarayana S, Swan SH (2009) Phthalates and other additives in plastics: human exposure and associated health outcomes[J]. Philos Trans R Soc B Biol Sci 364(1526):2097–2113CrossRefGoogle Scholar
  8. 8.
    Frederiksen H, Skakkebaek NE, Andersson AM (2007) Metabolism of phthalates in humans[J]. Mol Nutr Food Res 51(7):899–911PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yoshida T (2017) Analytical method for urinary metabolites as biomarkers for monitoring exposure to phthalates by gas chromatography/mass spectrometry[J]. Biomed Chromatogr 31(7):e3910CrossRefGoogle Scholar
  10. 10.
    Koch HM, Calafat AM (2009) Human body burdens of chemicals used in plastic manufacture[J]. Philos Trans R Soc B Biol Sci 364(1526):2063–2078CrossRefGoogle Scholar
  11. 11.
    Frederiksen H, Jorgensen N, Andersson AM (2010) Correlations between phthalate metabolites in urine, serum, and seminal plasma from young danish men determined by isotope dilution liquid chromatography tandem mass spectrometry[J]. J Anal Toxicol 34(7):400–410PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hines EP, Calatat AM, Silva MJ et al (2009) Concentrations of phthalate metabolites in milk, urine, saliva, and serum of lactating North Carolina women[J]. Environ Health Perspect 117(1):86–92PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Koch HM, Preuss R, Angerer J (2006) Di(2-ethylhexyl)phthalate (dehp): human metabolism and internal exposure – an update and latest results[J]. Int J Androl 29(1):155–165. discussion 181-155PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Corrales J, Kristofco LA, Steele WB et al (2015) Global assessment of bisphenol a in the environment: review and analysis of its occurrence and bioaccumulation[J]. Dose-Response Publ Int Hormesis Soc 13(3):1559325815598308Google Scholar
  15. 15.
    Chapin RE, Adams J, Boekelheide K et al (2008) Ntp-cerhr expert panel report on the reproductive and developmental toxicity of bisphenol a[J]. Birth Defects Res B Dev Reprod Toxicol 83(3):157–395PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC et al (2009) Endocrine-disrupting chemicals: an endocrine society scientific statement[J]. Endocr Rev 30(4):293–342PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Asimakopoulos AG, Thomaidis NS, Koupparis MA (2012) Recent trends in biomonitoring of bisphenol a, 4-t-octylphenol, and 4-nonylphenol[J]. Toxicol Lett 210(2):141–154PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Calafat AM, Longnecker MP, Koch HM et al (2015) Optimal exposure biomarkers for nonpersistent chemicals in environmental epidemiology[J]. Environ Health Perspect 123(7):A166–A168PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ye X, Kuklenyik Z, Needham LL et al (2005) Quantification of urinary conjugates of bisphenol a, 2,5-dichlorophenol, and 2-hydroxy-4-methoxybenzophenone in humans by online solid phase extraction-high performance liquid chromatography-tandem mass spectrometry[J]. Anal Bioanal Chem 383(4):638–644PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Andra SS, Austin C, Yang J et al (2016) Recent advances in simultaneous analysis of bisphenol a and its conjugates in human matrices: exposure biomarker perspectives[J]. Sci Total Environ 572:770–781PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Liao CY, Kannan K (2012) Determination of free and conjugated forms of bisphenol a in human urine and serum by liquid chromatography-tandem mass spectrometry[J]. Environ Sci Technol 46(9):5003–5009PubMedCrossRefGoogle Scholar
  22. 22.
    Lacroix MZ, Puel S, Collet SH et al (2011) Simultaneous quantification of bisphenol a and its glucuronide metabolite (bpa-g) in plasma and urine: applicability to toxicokinetic investigations[J]. Talanta 85(4):2053–2059PubMedCrossRefGoogle Scholar
  23. 23.
    Gerona RR, Woodruff TJ, Dickenson CA et al (2013) Bisphenol-a (bpa), bpa glucuronide, and bpa sulfate in midgestation umbilical cord serum in a northern and Central California population[J]. Environ Sci Technol 47(21):12477–12485PubMedCrossRefGoogle Scholar
  24. 24.
    Arbuckle TE, Marro L, Davis K et al (2015) Exposure to free and conjugated forms of bisphenol a and triclosan among pregnant women in the mirec cohort[J]. Environ Health Perspect 123(4):277–284PubMedCrossRefGoogle Scholar
  25. 25.
    Nachman RM, Fox SD, Golden WC et al (2013) Urinary free bisphenol a and bisphenol a-glucuronide concentrations in newborns[J]. J Pediatr 162(4):870–872PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Battal D, Cok I, Unlusayin I et al (2014) Determination of urinary levels of bisphenol a in a turkish population[J]. Environ Monit Assess 186(12):8443–8452PubMedCrossRefGoogle Scholar
  27. 27.
    Provencher G, Berube R, Dumas P et al (2014) Determination of bisphenol a, triclosan and their metabolites in human urine using isotope-dilution liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A 1348:97–104PubMedCrossRefGoogle Scholar
  28. 28.
    Gerona RR, Woodruff TJ, Dickenson CA et al (2013) Bisphenol-a (bpa), bpa glucuronide, and bpa sulfate in midgestation umbilical cord serum in a northern and Central California population[J]. Environ Sci Technol 47(21):12477–12485PubMedCrossRefGoogle Scholar
  29. 29.
    Waechter J, Thornton C, Markham D et al (2007) Factors affecting the accuracy of bisphenol a and bisphenol a-monoglucuronide estimates in mammalian tissues and urine samples[J]. Toxicol Mech Methods 17(1):13–24PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hauck ZZ, Huang K, Li GN et al (2016) Determination of bisphenol a-glucuronide in human urine using ultrahigh-pressure liquid chromatography/tandem mass spectrometry[J]. Rapid Commun Mass Spectrom 30(3):400–406PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Thuresson K, Hoglund P, Hagmar L et al (2006) Apparent half-lives of hepta- to decabrominated diphenyl ethers in human serum as determined in occupationally exposed workers[J]. Environ Health Perspect 114(2):176–181PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Valters K, Li H, Alaee M et al (2005) Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit river[J]. Environ Sci Technol 39(15):5612–5619PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Keller JM, Swarthout RF, Carlson BK et al (2009) Comparison of five extraction methods for measuring pcbs, pbdes, organochlorine pesticides, and lipid content in serum[J]. Anal Bioanal Chem 393(2):747–760PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lin Y, Feng C, Xu Q et al (2016) A validated method for rapid determination of dibenzo-p-dioxins/furans (pcdd/fs), polybrominated diphenyl ethers (pbdes) and polychlorinated biphenyls (pcbs) in human milk: focus on utility of tandem solid phase extraction (spe) cleanup[J]. Anal Bioanal Chem 408(18):4897–4906PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Liu LY, He K, Hites RA et al (2016) Hair and nails as noninvasive biomarkers of human exposure to brominated and organophosphate flame retardants[J]. Environ Sci Technol 50(6):3065–3073PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ivanisevic J, Zhu ZJ, Plate L et al (2013) Toward omic scale metabolite profiling: a dual separation-mass spectrometry approach for coverage of lipid and central carbon metabolism[J]. Anal Chem 85(14):6876–6884PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Grigoryan H, Li H, Iavarone AT et al (2012) Cys34 adducts of reactive oxygen species in human serum albumin[J]. Chem Res Toxicol 25(8):1633–1642PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics[J]. Proc Natl Acad Sci U S A 112(41):12549–12550PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zhou B, Xiao JF, Tuli L et al (2012) Lc-ms-based metabolomics[J]. Mol BioSyst 8(2):470–481PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Rappaport SM, Barupal DK, Wishart D et al (2014) The blood exposome and its role in discovering causes of disease[J]. Environ Health Perspect 122(8):769–774PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Barr DB, Wang RY, Needham LL (2005) Biologic monitoring of exposure to environmental chemicals throughout the life stages: requirements and issues for consideration for the national children’s study[J]. Environ Health Perspect 113(8):1083–1091PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lu C, Anderson LC, Morgan MS et al (1998) Salivary concentrations of atrazine reflect free atrazine plasma levels in rats[J]. J Toxicol Environ Health A 53(4):283–292PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Beane J, Vick J, Schembri F et al (2011) Characterizing the impact of smoking and lung cancer on the airway transcriptome using rna-seq[J]. Cancer Prev Res (Phila) 4(6):803–817CrossRefGoogle Scholar
  44. 44.
    Athersuch TJ, Keun HC (2015) Metabolic profiling in human exposome studies[J]. Mutagenesis 30(6):755–762PubMedPubMedCentralGoogle Scholar
  45. 45.
    Athersuch T (2016) Metabolome analyses in exposome studies: profiling methods for a vast chemical space[J]. Arch Biochem Biophys 589:177–186PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Andra SS, Austin C, Patel D et al (2017) Trends in the application of high-resolution mass spectrometry for human biomonitoring: an analytical primer to studying the environmental chemical space of the human exposome[J]. Environ Int 100:32–61PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Manrai AK, Cui Y, Bushel PR et al (2017) Informatics and data analytics to support exposome-based discovery for public health[J]. Annu Rev Public Health 38:279–294PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso[J]. Biostatistics 9(3):432–441PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Di Q, Rowland S, Koutrakis P et al (2017) A hybrid model for spatially and temporally resolved ozone exposures in the continental United States[J]. J Air Waste Manage Assoc 67(1):39–52CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Public HealthFudan UniversityShanghaiChina
  2. 2.Key Laboratory of Public Health Safety, Ministry of EducationFudan UniversityShanghaiChina
  3. 3.State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution ComplexShanghai Academy of Environmental SciencesShanghaiChina

Personalised recommendations