Advertisement

Low-Rank Learning of Functional Connectivity Reveals Neural Traits of Individual Differences

  • Dewen Hu
  • Ling-Li Zeng
Chapter

Abstract

The intrinsic functional connectivity not only follows underlying anatomical connectivity architecture but also varies across individuals. However, how this connectivity variability underpins the diversity of cognitive and behavioral ability has not been well established. In this chapter, we sought to build a mapping between the individual behavioral differences and the inter-subject variability of functional anatomy in an “individual traits space” obtained by a background-subtraction technique. Applying a novel low-rank matrix recovery method, the functional connectivity was dissociated into a background skeleton that delineates functional characteristics common across the population and individual traits that were expected to account for individual behavioral differences. Subsequently, a sparse dictionary learning algorithm was performed on the extracted individual connectivity traits, identifying multiple individual difference units (IDUs) that were then used to map the inter-subject variability of cognitive behavior. The identified functional background skeleton was demonstrated to have high similarity to anatomical connectivity substrate. More importantly, the IDUs dissociated multiple sources of connectivity variability and consisted of an over-completed space representing individual behavior. Our findings suggest that steady anatomical substrates and multiple-dimensional functional traits shape an individual’s connectome and well support individual cognitive behaviors, which may advance our understanding of the relationship among anatomy, function, and behavior.

Keywords

Low-rank learning Sparse representation Functional connectivity Individual differences fMRI 

References

  1. 1.
    Petersen, S.E., Sporns, O.: Brain networks and cognitive architectures. Neuron 88(1), 207–219 (2015). https://doi.org/10.1016/j.neuron.2015.09.027. http://www.sciencedirect.com/science/article/pii/S0896627315008168 CrossRefGoogle Scholar
  2. 2.
    Poldrack, R.A., Farah, M.J.: Progress and challenges in probing the human brain. Nature 526(7573), 371–379 (2015).  https://doi.org/10.1038/nature15692 CrossRefGoogle Scholar
  3. 3.
    Finn, E.S., Shen, X., Scheinost, D., Rosenberg, M.D., Huang, J., Chun, M.M., Papademetris, X., Constable, R.T.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664 (2015). https://doi.org/10.1038/nn.4135 CrossRefGoogle Scholar
  4. 4.
    Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hagmann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 106(6), 2035–2040 (2009). http://www.pnas.org/content/106/6/2035.full.pdf.  https://doi.org/10.1073/pnas.0811168106 CrossRefGoogle Scholar
  5. 5.
    Park, H.-J., Friston, K.: Structural and functional brain networks: from connections to cognition. Science 342(6158), 1238411 (2013). http://science.sciencemag.org/content/342/6158/1238411.abstract CrossRefGoogle Scholar
  6. 6.
    Tewarie, P., Hillebrand, A., van Dellen, E., Schoonheim, M., Barkhof, F., Polman, C., Beaulieu, C., Gong, G., van Dijk, B., Stam, C.: Structural degree predicts functional network connectivity: a multimodal resting-state fMRI and MEG study. Neuroimage 97, 296–307 (2014). https://doi.org/10.1016/j.neuroimage.2014.04.038. http://www.sciencedirect.com/science/article/pii/S1053811914003073 CrossRefGoogle Scholar
  7. 7.
    Xu, J., Potenza, M.N., Calhoun, V.D., Zhang, R., Yip, S.W., Wall, J.T., Pearlson, G.D., Worhunsky, P.D., Garrison, K.A., Moran, J.M.: Large-scale functional network overlap is a general property of brain functional organization: reconciling inconsistent fMRI findings from general-linear-model-based analyses. Neurosci. Biobehav. Rev. 71, 83–100 (2016). https://doi.org/10.1016/j.neubiorev.2016.08.035. http://www.sciencedirect.com/science/article/pii/S0149763416300719 CrossRefGoogle Scholar
  8. 8.
    Mueller, S., Wang, D., Fox, M., Yeo, B., Sepulcre, J., Sabuncu, M., Shafee, R., Lu, J., Liu, H.: Individual variability in functional connectivity architecture of the human brain. Neuron 77(3), 586–595 (2013). https://doi.org/10.1016/j.neuron.2012.12.028. http://www.sciencedirect.com/science/article/pii/S0896627313000044 CrossRefGoogle Scholar
  9. 9.
    Laumann, T.O., Gordon, E.M., Adeyemo, B., Snyder, A.Z., Joo, S.J., Chen, M.-Y., Gilmore, A.W., McDermott, K.B., Nelson, S.M., Dosenbach, N.U.F., Schlaggar, B.L., Mumford, J.A., Poldrack, R.A., Petersen, S.E.: Functional system and areal organization of a highly sampled individual human brain. Neuron 87(3), 657–670 (2015). http://www.sciencedirect.com/science/article/pii/S0896627315006005 CrossRefGoogle Scholar
  10. 10.
    Gordon, E.M., Laumann, T.O., Adeyemo, B., Petersen, S.E.: Individual variability of the system-level organization of the human brain. Cereb. Cortex 27(1), 386–399 (2017).  https://doi.org/10.1093/cercor/bhv239. http://europepmc.org/articles/PMC5939195
  11. 11.
    Tavor, I., Jones, O.P., Mars, R.B., Smith, S.M., Behrens, T.E., Jbabdi, S.: Task-free MRI predicts individual differences in brain activity during task performance. Science 352(6282), 216–220 (2016). http://science.sciencemag.org/content/352/6282/216.full.pdf.  https://doi.org/10.1126/science.aad8127 CrossRefGoogle Scholar
  12. 12.
    Dubois, J., Adolphs, R.: Building a science of individual differences from fMRI. Trends Cogn. Sci. 20(6), 425–443 (2016). https://doi.org/10.1016/j.tics.2016.03.014. http://www.sciencedirect.com/science/article/pii/S1364661316300079 CrossRefGoogle Scholar
  13. 13.
    Barch, D.M., Burgess, G.C., Harms, M.P., Petersen, S.E., Schlaggar, B.L., Corbetta, M., Glasser, M.F., Curtiss, S., Dixit, S., Feldt, C., Nolan, D., Bryant, E., Hartley, T., Footer, O., Bjork, J.M., Poldrack, R., Smith, S., Johansen-Berg, H., Snyder, A.Z., Essen, D.C.V.: Function in the human connectome: task-fMRI and individual differences in behavior. Neuroimage 80, 169–189 (2013). Mapping the Connectome. https://doi.org/10.1016/j.neuroimage.2013.05.033. http://www.sciencedirect.com/science/article/pii/S1053811913005272 CrossRefGoogle Scholar
  14. 14.
    Yang, Z., Zuo, X.-N., McMahon, K.L., Craddock, R.C., Kelly, C., de Zubicaray, G.I., Hickie, I., Bandettini, P.A., Castellanos, F.X., Milham, M.P., Wright, M.J.: Genetic and environmental contributions to functional connectivity architecture of the human brain. Cereb. Cortex 26(5), 2341–2352 (2016)CrossRefGoogle Scholar
  15. 15.
    Bouwmans, T., Zahzah, E.H.: Robust pca via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122, 22–34 (2014). https://doi.org/10.1016/j.cviu.2013.11.009. http://www.sciencedirect.com/science/article/pii/S1077314213002294 CrossRefGoogle Scholar
  16. 16.
    Candés, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 11:1–11:37 (2009). https://doi.org/10.1145/1970392.1970395 CrossRefGoogle Scholar
  17. 17.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. J. Mach. Learn. Res. 11, 19–60 (2010). http://dl.acm.org/citation.cfm?id=1756006.1756008 Google Scholar
  18. 18.
    Smith, S.M., Beckmann, C.F., Andersson, J., Auerbach, E.J., Bijsterbosch, J., Douaud, G., Duff, E., Feinberg, D.A., Griffanti, L., Harms, M.P., Kelly, M., Laumann, T., Miller, K.L., Moeller, S., Petersen, S., Power, J., Salimi-Khorshidi, G., Snyder, A.Z., Vu, A.T., Woolrich, M.W., Xu, J., Yacoub, E., Uğurbil, K., Essen, D.C.V., Glasser, M.F.: Resting-state fMRI in the human connectome project. Neuroimage 80, 144–168 (2013). Mapping the Connectome. https://doi.org/10.1016/j.neuroimage.2013.05.039. http://www.sciencedirect.com/science/article/pii/S1053811913005338 CrossRefGoogle Scholar
  19. 19.
    Essen, D.C.V., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The wu-minn human connectome project: an overview. Neuroimage 80, 62–79 (2013). Mapping the Connectome. https://doi.org/10.1016/j.neuroimage.2013.05.041. http://www.sciencedirect.com/science/article/pii/S1053811913005351 CrossRefGoogle Scholar
  20. 20.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Essen, D.C.V., Jenkinson, M.: The minimal preprocessing pipelines for the human connectome project. Neuroimage 80, 105–124 (2013). Mapping the Connectome. https://doi.org/10.1016/j.neuroimage.2013.04.127. http://www.sciencedirect.com/science/article/pii/S1053811913005053 CrossRefGoogle Scholar
  21. 21.
    Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Essen, D.C.V., Ugurbil, K., Behrens, T.E.: Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80, 125–143 (2013). Mapping the Connectome. https://doi.org/10.1016/j.neuroimage.2013.05.057. http://www.sciencedirect.com/science/article/pii/S105381191300551X CrossRefGoogle Scholar
  22. 22.
    Behrens, T., Woolrich, M., Jenkinson, M., Johansen-Berg, H., Nunes, R., Clare, S., Matthews, P., Brady, J., Smith, S.: Characterization and propagation of uncertainty in diffusion-weighted mr imaging. Magn. Reson. Med. 50(5), 1077–1088 (2003).  https://doi.org/10.1002/mrm.10609 CrossRefGoogle Scholar
  23. 23.
    Dosenbach, N.U.F., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., Nelson, S.M., Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C.N., Barnes, K.A., Dubis, J.W., Feczko, E., Coalson, R.S., Pruett, J.R., Barch, D.M., Petersen, S.E., Schlaggar, B.L.: Prediction of individual brain maturity using fMRI. Science 329(5997), 1358–1361 (2010).  https://doi.org/10.1126/science.1194144. http://europepmc.org/articles/PMC3135376 CrossRefGoogle Scholar
  24. 24.
    Xie, S., Chen, L., Zuo, N., Jiang, T.: Diffusionkit: a light one-stop solution for diffusion MRI data analysis. J. Neurosci. Methods 273, 107–119 (2016). https://doi.org/10.1016/j.jneumeth.2016.08.011. http://www.sciencedirect.com/science/article/pii/S0165027016301960 CrossRefGoogle Scholar
  25. 25.
    Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., Chen, H., Deng, F., Faraco, C., Jin, C., Wee, C.-Y., Yuan, Y., Lv, P., Yin, Y., Hu, X., Duan, L., Hu, X., Han, J., Wang, L., Shen, D., Miller, L.S., Li, L., Liu, T.: DICCCOL: dense individualized and common connectivity-based cortical landmarks. Cereb. Cortex 23(4), 786–800 (2013).  https://doi.org/10.1093/cercor/bhs072. http://europepmc.org/articles/PMC3593574 CrossRefGoogle Scholar
  26. 26.
    Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98(6), 1031–1044 (2010)CrossRefGoogle Scholar
  27. 27.
    Abolghasemi, V., Ferdowsi, S., Sanei, S.: Fast and incoherent dictionary learning algorithms with application to fMRI. Signal Image Video Process. 9(1), 147–158 (2015). https://doi.org/10.1007/s11760-013-0429-2 CrossRefGoogle Scholar
  28. 28.
    Jiang, X., Li, X., Lv, J., Zhang, T., Zhang, S., Guo, L., Liu, T.: Sparse representation of HCP grayordinate data reveals novel functional architecture of cerebral cortex. Hum. Brain Mapp. 36(12), 5301–5319 (2015).  https://doi.org/10.1002/hbm.23013 CrossRefGoogle Scholar
  29. 29.
    Gunn, S.: Support vector machines for classification and regression. ISIS Technical Report (1998)Google Scholar
  30. 30.
    Power, J., Schlaggar, B., Lessov-Schlaggar, C., Petersen, S.: Evidence for hubs in human functional brain networks. Neuron 79(4), 798–813 (2013). https://doi.org/10.1016/j.neuron.2013.07.035. http://www.sciencedirect.com/science/article/pii/S0896627313006594 CrossRefGoogle Scholar
  31. 31.
    Dijk, K.R.V., Sabuncu, M.R., Buckner, R.L.: The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59(1), 431–438 (2012). Neuroergonomics: The Human Brain in Action and at Work. https://doi.org/10.1016/j.neuroimage.2011.07.044. http://www.sciencedirect.com/science/article/pii/S1053811911008214 CrossRefGoogle Scholar
  32. 32.
    Shen, K., Mišić, B., Cipollini, B.N., Bezgin, G., Buschkuehl, M., Hutchison, R.M., Jaeggi, S.M., Kross, E., Peltier, S.J., Everling, S., Jonides, J., McIntosh, A.R., Berman, M.G.: Stable long-range interhemispheric coordination is supported by direct anatomical projections. Proc. Natl. Acad. Sci. 112(20), 6473–6478 (2015). http://www.pnas.org/content/112/20/6473.full.pdf.  https://doi.org/10.1073/pnas.1503436112 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dewen Hu
    • 1
  • Ling-Li Zeng
    • 1
  1. 1.College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina

Personalised recommendations