Advertisement

Introduction

  • Dewen Hu
  • Ling-Li Zeng
Chapter

Abstract

Pattern analysis of brain connectome attracts increasing attention in recent years. In this chapter, we first gave a brief review of multimodal brain imaging and brain connectome, and then we discussed some basic concepts of multivariate pattern analysis of brain connectome and its application in neuropsychiatric disorders, including feature extraction, dimensionality reduction, classifier design, and performance evaluation. Finally, we introduced the content of this book.

Keywords

Multivariate pattern analysis Brain connectome fMRI DTI 

References

  1. 1.
    Ogawa, S., Tank, W.L., Menon, R., Ellermann, M.L., Kim, G.L., Merkle, H., Ugurbil, K.: Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. 89(13), 5951–5955 (1992). arXiv:https://www.pnas.org/content/89/13/5951.full.pdf,  https://doi.org/10.1073/pnas.89.13.5951. https://www.pnas.org/content/89/13/5951 CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Smith, M.L.: The future of FMRI connectivity. NeuroImage 62(2), 1257–1266 (2012), 20 years of fMRI. http://www.sciencedirect.com/science/article/pii/S1053811912000390. https://doi.org/10.1016/j.neuroimage.2012.01.022 PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Karas, G., Burton, E., Rombouts, S., van Schijndel, R., O’Brien, J., Scheltens, P., McKeith, I., Williams, D., Ballard, C., Barkhof, F.: A comprehensive study of gray matter loss in patients with alzheimer’s disease using optimized voxel-based morphometry. NeuroImage 18(4), 895–907 (2003). https://doi.org/10.1016/S1053-8119(03)00041-7. http://www.sciencedirect.com/science/article/pii/S1053811903000417 PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Burton, J.L., McKeith, I.G., Burn, J.L., Williams, D.L., O’Brien, T.L.: Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127(4), 791–800 (2004).  https://doi.org/10.1093/brain/awh088. arXiv:http://oup.prod.sis.lan/brain/article-pdf/127/4/791/1116046/awh088.pdf PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zeng, L.-L., Xie, L., Shen, H., Luo, Z., Fang, P., Hou, Y., Tang, B., Wu, T., Hu, D.: Differentiating patients with parkinson’s disease from normal controls using gray matter in the cerebellum. The Cerebellum 16(1), 151–157 (2017). https://doi.org/10.1007/s12311-016-0781-1.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Bernasconi, N., Duchesne, S., Janke, A., Lerch, J., Collins, D., Bernasconi, A.: Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy. NeuroImage 23(2), 717–723 (2004). https://doi.org/10.1016/j.neuroimage.2004.06.015. http://www.sciencedirect.com/science/article/pii/S1053811904003246 CrossRefGoogle Scholar
  8. 8.
    Chen, S., Xia, W., Li, L., Liu, J., He, Z., Zhang, Z., Yan, L., Zhang, J., Hu, D.: Gray matter density reduction in the insula in fire survivors with posttraumatic stress disorder: a voxel-based morphometric study. Psychiatr. Res.: Neuroimaging 146(1), 65–72 (2006). https://doi.org/10.1016/j.pscychresns.2005.09.006. http://www.sciencedirect.com/science/article/pii/S0925492705001514 PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Kubicki, M., Shenton, M., Salisbury, D., Hirayasu, Y., Kasai, K., Kikinis, R., Jolesz, F., McCarley, R.: Voxel-based morphometric analysis of gray matter in first episode schizophrenia. NeuroImage 17(4), 1711–1719 (2002).  https://doi.org/10.1006/nimg.2002.1296. http://www.sciencedirect.com/science/article/pii/S1053811902912966 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zeng, L.-L., Shen, H., Liu, L., Fang, P., Liu, Y., Hu, D.: State-dependent and trait-related gray matter changes in nonrefractory depression. NeuroReport 26(2), 57–65 (2015). https://journals.lww.com/neuroreport/Fulltext/2015/01020/State_dependent_and_trait_related_gray_matter.3.aspx PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hill, J., Inder, T., Neil, J., Dierker, D., Harwell, J., Van Essen, D.: Similar patterns of cortical expansion during human development and evolution. Proc. Natl. Acad. Sci. 107(29), 13135–13140 (2010). arXiv:https://www.pnas.org/content/107/29/13135.full.pdf,  https://doi.org/10.1073/pnas.1001229107. https://www.pnas.org/content/107/29/13135 CrossRefGoogle Scholar
  12. 12.
    Wilke, M., Krägeloh-Mann, I., Holland, K.L.: Global and local development of gray and white matter volume in normal children and adolescents. Exp. Br. Res. 178(3), 296–307 (2007). https://doi.org/10.1007/s00221-006-0732-z CrossRefGoogle Scholar
  13. 13.
    Maguire, A.L., Woollett, K., Spiers, J.L.: London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis. Hippocampus 16(12), 1091–1101 (2019).  https://doi.org/10.1002/hipo.20233 CrossRefGoogle Scholar
  14. 14.
    Evans, C.L., He, Y., Chen, J.L.: Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb. Cortex 17(10), 2407–2419 (2007). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/17/10/2407/17296816/bhl149.pdf,  https://doi.org/10.1093/cercor/bhl149 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Bassett, S.L., Bullmore, E., Verchinski, A.L., Mattay, S.L., Weinberger, R.L., Meyer-Lindenberg, A.: Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci. 28(37), 9239–9248 (2008). arXiv:http://www.jneurosci.org/content/28/37/9239.full.pdf,  https://doi.org/10.1523/JNEUROSCI.1929-08.2008. http://www.jneurosci.org/content/28/37/9239 PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Basser, P., Mattiello, J., LeBihan D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994). https://doi.org/10.1016/S0006-3495(94)80775-1. http://www.sciencedirect.com/science/article/pii/S0006349594807751 PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Behrens, T., Berg, J.L., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?. NeuroImage 34(1), 144–155 (2007). https://doi.org/10.1016/j.neuroimage.2006.09.018. http://www.sciencedirect.com/science/article/pii/S1053811906009360 PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Fjell, M.L., Engvig, A., Tamnes, K.L., Grydeland, H., Walhovd, B.L., Westlye, T.L., Ostby, Y., Dale, M.L., Bjørnerud, A., Due-Tønnessen, P.: Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb. Cortex 20(9), 2055–2068 (2009). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/20/9/2055/17303951/bhp280.pdf,  https://doi.org/10.1093/cercor/bhp280 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ingalhalikar, M., Smith, A., Parker, D., Satterthwaite, D.L., Elliott, A.L., Ruparel, K., Hakonarson, H., Gur, E.L., Gur, C.L., Verma, R.: Sex differences in the structural connectome of the human brain. Proc. Natl. Acad. Sci. 111(2), 823–828 (2014). arXiv:https://www.pnas.org/content/111/2/823.full.pdf,  https://doi.org/10.1073/pnas.1316909110. https://www.pnas.org/content/111/2/823 CrossRefGoogle Scholar
  20. 20.
    Fang, P., Zeng, L.-L., Shen, H., Wang, L., Li, B., Liu, L., Hu, D.: Increased cortical-limbic anatomical network connectivity in major depression revealed by Diffusion Tensor Imaging. PLoS ONE 7(9), 1–10 (2012).  https://doi.org/10.1371/journal.pone.0045972 Google Scholar
  21. 21.
    Raichle, E.L.: A brief history of human brain mapping. Trends Neurosci. 32(2), 118–126 (2009). https://doi.org/10.1016/j.tins.2008.11.001. http://www.sciencedirect.com/science/article/pii/S0166223608002658 PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Fox, D.L., Raichle, E.L.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).  https://doi.org/10.1038/nrn2201 CrossRefGoogle Scholar
  23. 23.
    Biswal, B., Zerrin Yetkin, F., Haughton, M.L., Hyde, S.L.: Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34(4), 537–541 (2019).  https://doi.org/10.1002/mrm.1910340409 CrossRefGoogle Scholar
  24. 24.
    Friston, J.L.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2(1), 56–78 (2019).  https://doi.org/10.1002/hbm.460020107 CrossRefGoogle Scholar
  25. 25.
    McKeown, M.J., Jung, T.-P., Makeig, S., Brown, G., Kindermann, S.L., Lee, T.-W., Sejnowski, J.L.: Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proc. Natl. Acad. Sci. 95(3), 803–810 (1998). arXiv:https://www.pnas.org/content/95/3/803.full.pdf,  https://doi.org/10.1073/pnas.95.3.803. https://www.pnas.org/content/95/3/803 CrossRefGoogle Scholar
  26. 26.
    Friston, J.L., Frith, D.L., Liddle, F.L., Frackowiak, R.S.J.: Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13(1), 5–14 (1993), pMID: 8417010.  https://doi.org/10.1038/jcbfm.1993.4 PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sun, T.L., Miller, M.L., D’Esposito, M.: Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. NeuroImage 21(2), 647–658 (2004). https://doi.org/10.1016/j.neuroimage.2003.09.056. http://www.sciencedirect.com/science/article/pii/S1053811903006062 PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Cordes, D., Haughton, V., Carew, D.L., Arfanakis, K., Maravilla, K.: Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn. Reson. Imaging 20(4), 305–317 (2002). https://doi.org/10.1016/S0730-725X(02)00503-9. http://www.sciencedirect.com/science/article/pii/S0730725X02005039 PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Greicius, D.L., Krasnow, B., Reiss, L.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100(1), 253–258 (2003). arXiv:https://www.pnas.org/content/100/1/253.full.pdf,  https://doi.org/10.1073/pnas.0135058100. https://www.pnas.org/content/100/1/253 CrossRefGoogle Scholar
  30. 30.
    Fox, D.L., Snyder, Z.L., Vincent, L.L., Corbetta, M., Van Essen, C.L., Raichle, E.L.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 102(27), 9673–9678 (2005). arXiv:https://www.pnas.org/content/102/27/9673.full.pdf,  https://doi.org/10.1073/pnas.0504136102. https://www.pnas.org/content/102/27/9673 CrossRefGoogle Scholar
  31. 31.
    Beckmann Christian, F., Marilena, D., Devlin Joseph, T., Smith Stephen, M.: Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B: Biol. Sci. 360(1457), 1001–1013 (2019).  https://doi.org/10.1098/rstb.2005.1634 CrossRefGoogle Scholar
  32. 32.
    Damoiseaux, S.L., Rombouts, S.A.R.B., Barkhof, F., Scheltens, P., Stam, J.L., Smith, M.L., Beckmann, F.L.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. 103(37), 13848–13853 (2006). arXiv:https://www.pnas.org/content/103/37/13848.full.pdf,  https://doi.org/10.1073/pnas.0601417103. https://www.pnas.org/content/103/37/13848 CrossRefGoogle Scholar
  33. 33.
    Friston, J.L., Frith, D.L., Frackowiak, R.S.J.: Time-dependent changes in effective connectivity measured with PET. Hum. Brain Mapp. 1(1), 69–79 (2019).  https://doi.org/10.1002/hbm.460010108 CrossRefGoogle Scholar
  34. 34.
    Friston, J.L., Ungerleider, G.L., Jezzard, P., Turner, R.: Characterizing modulatory interactions between areas V1 and V2 in human cortex: a new treatment of functional MRI data. Hum. Brain Mapp. 2(4), 211–224 (2019).  https://doi.org/10.1002/hbm.460020403 CrossRefGoogle Scholar
  35. 35.
    Friston, K., Harrison, L., Penny, W.: Dynamic causal modelling. NeuroImage 19(4), 1273–1302 (2003). https://doi.org/10.1016/S1053-8119(03)00202-7. http://www.sciencedirect.com/science/article/pii/S1053811903002027 CrossRefGoogle Scholar
  36. 36.
    Goebel, R., Roebroeck, A., Kim, D.-S., Formisano, E.: Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and granger causality mapping. Magn. Reson. Imaging 21(10), 1251–1261 (2003). https://doi.org/10.1016/j.mri.2003.08.026. http://www.sciencedirect.com/science/article/pii/S0730725X03003370 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Horwitz, B., Tagamets, M.-A., McIntosh, A.R. Neural modeling, functional brain imaging, and cognition. Trends Cogn. Sci. 3(3), 91–98 (1999). https://doi.org/10.1016/S1364-6613(99)01282-6. http://www.sciencedirect.com/science/article/pii/S1364661399012826 PubMedCrossRefGoogle Scholar
  38. 38.
    Esposito, F., Bertolino, A., Scarabino, T., Latorre, V., Blasi, G., Popolizio, T., Tedeschi, G., Cirillo, S., Goebel, R., Salle, D.L.: Independent component model of the default-mode brain function: assessing the impact of active thinking. Brain Res. Bull. 70(4), 263–269 (2006). https://doi.org/10.1016/j.brainresbull.2006.06.012. http://www.sciencedirect.com/science/article/pii/S0361923006002073 PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Fornito, A., Harrison, J.L., Zalesky, A., Simons, S.L.: Competitive and cooperative dynamics of large-scale brain functional networks supporting recollection. Proc. Natl. Acad. Sci. 109(31), 12788–12793 (2012). arXiv:https://www.pnas.org/content/109/31/12788.full.pdf,  https://doi.org/10.1073/pnas.1204185109. https://www.pnas.org/content/109/31/12788 CrossRefGoogle Scholar
  40. 40.
    Rao, A.L., Sun, T.L., D’Esposito, M., Miller, M.L.: Functional connectivity of cortical networks involved in bimanual motor sequence learning. Cereb. Cortex 17(5), 1227–1234 (2006). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/17/5/1227/991520/bhl033.pdf,  https://doi.org/10.1093/cercor/bhl033 PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Lewis, M.L., Baldassarre, A., Committeri, G., Romani, L.L., Corbetta, M.: Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. 106(41), 17558–17563 (2009). arXiv:https://www.pnas.org/content/106/41/17558.full.pdf,  https://doi.org/10.1073/pnas.0902455106. https://www.pnas.org/content/106/41/17558 CrossRefGoogle Scholar
  42. 42.
    Horovitz, G.L., Fukunaga, M., de Zwart, A.L., van Gelderen, P., Fulton, C.L., Balkin, J.L., Duyn, H.L.: Low frequency bold fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 29(6), 671–682 (2019).  https://doi.org/10.1002/hbm.20428 CrossRefGoogle Scholar
  43. 43.
    Horovitz, G.L., Braun, R.L., Carr, S.L., Picchioni, D., Balkin, J.L., Fukunaga, M., Duyn, H.L.: Decoupling of the brain’s default mode network during deep sleep. Proc. Natl. Acad. Sci. 106(27), 11376–11381 (2009). arXiv:https://www.pnas.org/content/106/27/11376.full.pdf,  https://doi.org/10.1073/pnas.0901435106. https://www.pnas.org/content/106/27/11376 CrossRefGoogle Scholar
  44. 44.
    Boveroux, P., Vanhaudenhuyse, A., Bruno, M.-A., Noirhomme, Q., Lauwick, S., Luxen, A., Degueldre, C., Plenevaux, A., Schnakers, C., Phillips, C., Brichant, J.-F., Bonhomme, V., Maquet, P., Greicius, D.L., Laureys, S., Boly, M.: Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113(5), 1038–1053 (2010).  https://doi.org/10.1097/aln.0b013e3181f697f5 PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Allen, A.L., Damaraju, E., Plis, M.L., Erhardt, B.L., Eichele, T., Calhoun, D.L.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2012). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/24/3/663/14099596/bhs352.pdf,  https://doi.org/10.1093/cercor/bhs352 PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kiviniemi, V., Vire, T., Remes, J., Elseoud, A.L., Starck, T., Tervonen, O., Nikkinen, J.: A sliding time-window ICA reveals spatial variability of the default mode network in time. Brain Connect. 1(4), 339–347 (2011), pMID: 22432423.  https://doi.org/10.1089/brain.2011.0036 PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Chang, C., Glover, H.L.: Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50(1), 81–98 (2010). https://doi.org/10.1016/j.neuroimage.2009.12.011. http://www.sciencedirect.com/science/article/pii/S1053811909012981 PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Hutchison, M.L., Womelsdorf, T., Gati, S.L., Everling, S., Menon, S.L.: Resting-state networks show dynamic functional connectivity in awake humans and anesthetized macaques. Hum. Brain Mapp. 34(9), 2154–2177 (2019).  https://doi.org/10.1002/hbm.22058 CrossRefGoogle Scholar
  49. 49.
    Jones, T.L., Vemuri, P., Murphy, C.L., Gunter, L.L., Senjem, L.L., Machulda, M.L., Przybelski, A.L., Gregg, E.L., Kantarci, K., Knopman, S.L., Boeve, F.L., Petersen, C.L., Jack, R.L., Jr.: Non-stationarity in the resting brain’s modular architecture. PLoS ONE 7(6), 1–15 (2012).  https://doi.org/10.1371/journal.pone.0039731 Google Scholar
  50. 50.
    Hutchison, M.L., Womelsdorf, T., Allen, A.L., Bandettini, A.L., Calhoun, D.L., Corbetta, M., Penna, D.L., Duyn, H.L., Glover, H.L., Gonzalez-Castillo, J., Handwerker, A.L., Keilholz, S., Kiviniemi, V., Leopold, A.L., de Pasquale, F., Sporns, O., Walter, M., Chang, C.: Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80:360–378 (2013), mapping the Connectome. https://doi.org/10.1016/j.neuroimage.2013.05.079. http://www.sciencedirect.com/science/article/pii/S105381191300579X PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Haynes, J.-D., Rees, G.: Decoding mental states from brain activity in humans. Nat. Rev. Neurosci. 7, 523 (2006).  https://doi.org/10.1038/nrn1931 PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gong, Q., Wu, Q., Scarpazza, C., Lui, S., Jia, Z., Marquand, A., Huang, X., McGuire P, Mechelli, A.: Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage 55(4), 1497–1503 (2011). https://doi.org/10.1016/j.neuroimage.2010.11.079. http://www.sciencedirect.com/science/article/pii/S1053811910015570 PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Draganski, B., Chu, C., Jack, J., Clifford, R., Stonnington, M.L., Ashburner, J., Rohrer, D.L., Fox, C.L., Scahill, I.L., Frackowiak, R.S.J., Klöppel, S.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008).  https://doi.org/10.1093/brain/awm319. arXiv:http://oup.prod.sis.lan/brain/article-pdf/131/3/681/898663/awm319.pdf PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Uddin, Q.L., Menon, V., Young, B.L., Ryali, S., Chen, T., Khouzam, A., Minshew, J.L., Hardan, Y.L.: Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol. Psychiatr. 70(9), 833–841 (2011), genetic and Environmental Contributors to Disturbed Cortical Development in Developmental Disorders. https://doi.org/10.1016/j.biopsych.2011.07.014. http://www.sciencedirect.com/science/article/pii/S000632231100727X PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Desikan, S.L., Cabral, J.L., Hess, P.L., Dillon, P.L., Glastonbury, M.L., Weiner, W.L., Schmansky, J.L., Greve, N.L., Salat, H.L., Buckner, L.L., Fischl, B.: Alzheimer’s Disease Neuroimaging Initiative. Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease*. Brain 132(8), 2048–2057 (2009). arXiv:http://oup.prod.sis.lan/brain/article-pdf/132/8/2048/743415/awp123.pdf,  https://doi.org/10.1093/brain/awp123 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Yoon, U., Lee, J.-M., Im, K., Shin, Y.-W., Cho, H.L., Kim, Y.L., Kwon, S.L., Kim, I.L.: Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia. NeuroImage 34(4), 1405–1415 (2007). https://doi.org/10.1016/j.neuroimage.2006.11.021. http://www.sciencedirect.com/science/article/pii/S1053811906011232 PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mwangi, B., Douglas Steele, J., Matthews, K., Ebmeier, P.L.: Multi-centre diagnostic classification of individual structural neuroimaging scans from patients with major depressive disorder. Brain 135(5), 1508–1521 (2012). arXiv:http://oup.prod.sis.lan/brain/article-pdf/135/5/1508/17865265/aws084.pdf,  https://doi.org/10.1093/brain/aws084 PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ardekani, A.L., Tabesh, A., Sevy, S., Robinson, G.L., Bilder, M.L., Szeszko, R.L.: Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum. Brain Mapp. 32(1), 1–9 (2019).  https://doi.org/10.1002/hbm.20995 CrossRefGoogle Scholar
  59. 59.
    Walther, B.L., Chai, B., Caddigan, E., Beck, M.L., Fei-Fei, L.: Simple line drawings suffice for functional MRI decoding of natural scene categories. Proc. Natl. Acad. Sci. 108(23), 9661–9666 (2011). arXiv:https://www.pnas.org/content/108/23/9661.full.pdf,  https://doi.org/10.1073/pnas.1015666108. https://www.pnas.org/content/108/23/9661 CrossRefGoogle Scholar
  60. 60.
    Fu, H.L., Mourao-Miranda, J., Costafreda, G.L., Khanna, A., Marquand, F.L., Williams, C.L., Brammer, J.L.: Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol. Psychiatr. 63(7), 656–662 (2008), the Neurobiology and Therapeutics of Antidepressant-Resistant Depression. https://doi.org/10.1016/j.biopsych.2007.08.020. http://www.sciencedirect.com/science/article/pii/S0006322307008773 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Shirer, R.L., Greicius, D.L., Rykhlevskaia, E., Ryali, S., Menon, V.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22(1), 158–165 (2011). arXiv:http://oup.prod.sis.lan/cercor/article-pdf/22/1/158/14096754/bhr099.pdf,  https://doi.org/10.1093/cercor/bhr099 PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Dosenbach, N.U.F., Nardos, B., Cohen, L.L., Fair, A.L., Power, D.L., Church, A.L., Nelson, M.L., Wig, S.L., Vogel, C.L., Lessov-Schlaggar, N.L., Barnes, A.L., Dubis, W.L., Feczko, E., Coalson, S.L., Pruett, R.L., Barch, M.L., Petersen, E.L., Schlaggar, L.L.: Prediction of individual brain maturity using fMRI. Science 329(5997), 1358–1361 (2010). arXiv:https://science.sciencemag.org/content/329/5997/1358.full.pdf,  https://doi.org/10.1126/science.1194144. https://science.sciencemag.org/content/329/5997/1358 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Craddock, C.L., Holtzheimer, E.L., III, Hu, P.L., Mayberg, S.L.: Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 62, 1619–1628 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shen, H., Wang, L., Liu, Y., Hu, D.: Discriminative analysis of resting-state functional connectivity patterns of schizophrenia using low dimensional embedding of fMRI. NeuroImage 49(4), 3110–3121 (2010). https://doi.org/10.1016/j.neuroimage.2009.11.011. http://www.sciencedirect.com/science/article/pii/S1053811909011951 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Zhu, C.-Z., Zang, Y.-F., Cao, Q.-J., Yan, C.-G., He, Y., Jiang, T.-Z., Sui, M.-Q., Wang, Y.-F.: Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. NeuroImage 40(1), 110–120 (2008). https://doi.org/10.1016/j.neuroimage.2007.11.029. http://www.sciencedirect.com/science/article/pii/S1053811907010610 PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., Zhang, J., Hu, X., Li, L., Liu, T.: Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Hum. Brain Mapp. 35(4), 1761–1778 (2019).  https://doi.org/10.1002/hbm.22290 CrossRefGoogle Scholar
  67. 67.
    Brodersen, H.L., Schofield, M.L., Leff, P.L., Ong, S.L., Lomakina, I.L., Buhmann, M.L., Stephan, E.L.: Generative embedding for model-based classification of fMRI data. PLoS Comput. Biol. 7(6), 1–19 (2011).  https://doi.org/10.1371/journal.pcbi.1002079 CrossRefGoogle Scholar
  68. 68.
    Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45(1, Supplement 1), S199–S209 (2009), mathematics in Brain Imaging. https://doi.org/10.1016/j.neuroimage.2008.11.007. http://www.sciencedirect.com/science/article/pii/S1053811908012263 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li, Y., Namburi, P., Yu, Z., Guan, C., Feng, J., Gu, Z.: Voxel selection in fMRI data analysis based on sparse representation. IEEE Trans. Biomed. Eng. 56(10), 2439–2451 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Ryali, S., Supekar, K., Abrams, A.L., Menon, V.: Sparse logistic regression for whole-brain classification of fMRI data. NeuroImage 51(2), 752–764 (2010). https://doi.org/10.1016/j.neuroimage.2010.02.040. http://www.sciencedirect.com/science/article/pii/S1053811910002089 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Martino, D.L., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E.: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 43(1), 44–58 (2008). https://doi.org/10.1016/j.neuroimage.2008.06.037. http://www.sciencedirect.com/science/article/pii/S1053811908007854 PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Shen, X., Meyer, G.L.: Low-dimensional embedding of fMRI datasets. NeuroImage 41(3), 886–902 (2008). https://doi.org/10.1016/j.neuroimage.2008.02.051. http://www.sciencedirect.com/science/article/pii/S1053811908001869 PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hardoon, R.L., Mourão-Miranda, J., Brammer, M., Shawe-Taylor, J.: Unsupervised analysis of fMRI data using kernel canonical correlation. NeuroImage 37(4), 1250–1259 (2007). https://doi.org/10.1016/j.neuroimage.2007.06.017. http://www.sciencedirect.com/science/article/pii/S1053811907005708 PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Duda, O.L., Hart, E.L., Stork, G.L.: Pattern Classification. Wiley, New York (2012)Google Scholar
  75. 75.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer Science & Business Media, New York (2013)Google Scholar
  76. 76.
    Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., He, Y.: Discriminative analysis of early alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage 59(3), 2187–2195 (2012). https://doi.org/10.1016/j.neuroimage.2011.10.003. http://www.sciencedirect.com/science/article/pii/S1053811911011645 PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Liu, F., Wee, C.-Y, Chen, H., Shen, D.: Inter-modality relationship constrained multi-modality multi-task feature selection for alzheimer’s disease and mild cognitive impairment identification. NeuroImage 84, 466–475 (2014). https://doi.org/10.1016/j.neuroimage.2013.09.015. http://www.sciencedirect.com/science/article/pii/S1053811913009518 PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Orrù, G., Pettersson-Yeo, W., Marquand, F.L., Sartori, G., Mechelli, A.: Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36(4), 1140–1152 (2012). https://doi.org/10.1016/j.neubiorev.2012.01.004. http://www.sciencedirect.com/science/article/pii/S0149763412000139 CrossRefGoogle Scholar
  79. 79.
    Bishop, M.L., Nasrabadi, M.L.: Pattern recognition and machine learning. J. Electron. Imaging 16(4), 049901–049902 (2007)CrossRefGoogle Scholar
  80. 80.
    Shi, J., Malik, J.: Normalized cuts and image segmentation, Departmental Papers (CIS), pp. 888–905 (2000)Google Scholar
  81. 81.
    Wang, F., Zhao, B., Zhang, C.: Linear time maximum margin clustering. IEEE Trans. Neural Netw. 21(2), 319–332 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Li, Y.-F., Tsang, W.L., Kwok, J., Zhou, Z.-H.: Tighter and convex maximum margin clustering. In: van Dyk, D., Welling, M. (eds.) Artificial Intelligence and Statistics, pp. 344–51. PMLR (2009)Google Scholar
  83. 83.
    Xu, L., Neufeld, J., Larson, B., Schuurmans, D.: Maximum margin clustering. In: Advances in Neural Information Processing Systems, pp. 1537–44. Cambridge/London: MIT Press (2005)Google Scholar
  84. 84.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010. http://www.sciencedirect.com/science/article/pii/S016786550500303X CrossRefGoogle Scholar
  85. 85.
    Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Sun, Y., Wang, X., Tang, X.: Hybrid deep learning for face verification. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1997–2009 (2016).  https://doi.org/10.1109/TPAMI.2015.2505293 PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Kim, J., Calhoun, D.L., Shim, E., Lee, J.-H.: Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage 124, 127–146 (2016). https://doi.org/10.1016/j.neuroimage.2015.05.018. http://www.sciencedirect.com/science/article/pii/S1053811915003985 PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hazlett, C.L., Gu, H., Munsell, C.L., Kim, H.L., Styner, M., Wolff, J.L., Elison, T.L., Swanson, R.L., Zhu, H., Botteron, N.L., Collins, L.L., Constantino, N.L., Dager, R.L., Estes, M.L., Evans, C.L., Fonov, S.L., Gerig, G., Kostopoulos, P., McKinstry RC, Pandey, J., Paterson, S., Pruett, R.L., Schultz, T.L., Shaw, W.L., Zwaigenbaum, L., Piven, J., IBIS Network, Clinical Sites, Data Coordinating Center, Image Processing Core, Statistical Analysis.: Early brain development in infants at high risk for autism spectrum disorder. Nature 542(7641), 348–351 (2017).  https://doi.org/10.1038/nature21369. http://europepmc.org/articles/PMC5336143 PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Suk, H.-I., Lee, S.-W., Shen, D., The Alzheimer’s Disease Neuroimaging Initiative.: Latent feature representation with stacked auto-encoder for ad/mci diagnosis. Brain Struct. Funct. 220(2), 841–859 (2015). https://doi.org/10.1007/s00429-013-0687-3 PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kawahara, J., Brown, J.L., Miller, P.L., Booth, G.L., Chau, V., Grunau, E.L., Zwicker, G.L., Hamarneh, G.: Brainnetcnn: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017). https://doi.org/10.1016/j.neuroimage.2016.09.046. http://www.sciencedirect.com/science/article/pii/S1053811916305237 PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Zhao, Y., Dong, Q., Chen, H., Iraji, A., Li, Y., Makkie, M., Kou, Z., Liu, T.: Constructing fine-granularity functional brain network atlases via deep convolutional autoencoder. Med. Image Anal. 42, 200–211 (2017). https://doi.org/10.1016/j.media.2017.08.005. http://www.sciencedirect.com/science/article/pii/S1361841517301287 PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Arbabshirani, R.L., Plis, S., Sui, J., Calhoun, D.L.: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage 145, 137–65 (2017), individual Subject Prediction. https://doi.org/10.1016/j.neuroimage.2016.02.079. http://www.sciencedirect.com/science/article/pii/S105381191600210X PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Guo, X., Dominick, C.L., Minai, A.L., Li, H., Erickson, A.L., Lu, J.L.: Diagnosing autism spectrum disorder from brain resting-state functional connectivity patterns using a deep neural network with a novel feature selection method. Front. Neurosci. 11, 460 (2017).  https://doi.org/10.3389/fnins.2017.00460. https://www.frontiersin.org/article/10.3389/fnins.2017.00460
  94. 94.
    Vieira, S., Pinaya, H.L., Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017). https://doi.org/10.1016/j.neubiorev.2017.01.002. http://www.sciencedirect.com/science/article/pii/S0149763416305176 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Dewen Hu
    • 1
  • Ling-Li Zeng
    • 1
  1. 1.College of Intelligence Science and TechnologyNational University of Defense TechnologyChangshaChina

Personalised recommendations