Semantic Rules-Based Classification of Outdoor Natural Scene Images

  • C. A. LaulkarEmail author
  • P. J. Kulkarni
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1025)


This paper proposes the classification of outdoor natural scene images using semantic rules. The proposed work is divided into three stages: segmentation, object recognition and image classification. Segmented images are generated by applying SPDBSCAN with user interaction on original image. CNN model is trained of using these segmented images for recognition of the objects such as sky, water, green land and sand. Semantic rules are designed using information of object class and its spatial location in an image for classification of scene image into either of four classes: green_ground, desert, sea_water and beach class. For this research work, we have used images from SUN-397 dataset. The work has achieved F-ratio of 84% for scene classification.


Image classification Segmentation SPDBSCAN CNN AlexNet Object recognition Semantic rules 


  1. 1.
    Smeulders, A.W.M., et al.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 12, 1349–1380 (2000)Google Scholar
  2. 2.
    Wu, J., Rehg, J.M.: CENTRIST: a visual descriptor for scene categorization. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1489–1501 (2011)CrossRefGoogle Scholar
  3. 3.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene classification using a hybrid generative/discriminative approach. IEEE Trans. Pattern Anal. Mach. Intell. 30(4), 712–727 (2008)CrossRefGoogle Scholar
  4. 4.
    Xiao, J., et al.: Sun database: large-scale scene recognition from abbey to zoo. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2010)Google Scholar
  5. 5.
    Xiao, J., Ehinger, K.A., Hays, J., Torralba, A., Oliva, A.: Sun database: exploring a large collection of scene categories. Int. J. Comput. Vision 119(1), 3–22 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retrieval. Int. J. Comput. Vision 72(2), 133–157 (2007)CrossRefGoogle Scholar
  7. 7.
    Li, S., Wu, D.O.: Modularity-based image segmentation. IEEE Trans. Circuits Syst. Video Technol. 25(4), 570–581 (2015)Google Scholar
  8. 8.
    Liu, T., Seyedhosseini, M., Tasdizen, T.: Image segmentation using hierarchical merge tree. IEEE Trans. Image Process. 25(10), 4596–4607 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)CrossRefGoogle Scholar
  10. 10.
    Ye, Q., Gao, W., Zeng, W.: Color image segmentation using density-based clustering. In: 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (ICASSP’03), vol. 3, pp. III–345. IEEE (2003)Google Scholar
  11. 11.
    Ester, M., Kriegel, H.-P., Sander, J., Xiaowei, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96(34), 226–231 (1996)Google Scholar
  12. 12.
    Jian, M., Jung, C.: Interactive image segmentation using adaptive constraint propagation. IEEE Trans. Image Process. 25(3), 1301–1311 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Laulkar, C.A., Kulkarni, P.J.: Outdoor natural scene object classification using probabilistic neural network. Int. J. Comput. Sci. Eng. 06(01), 26–31 (2018)Google Scholar
  14. 14.
    Erhan, D., Szegedy, C., Toshev, A., Anguelov, D.: Scalable object detection using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2154 (2014)Google Scholar
  15. 15.
    Li, J., Wei, Y., Liang, X., Dong, J., Tingfa, X., Feng, J., Yan, S.: Attentive contexts for object detection. IEEE Trans. Multimedia 19(5), 944–954 (2017)CrossRefGoogle Scholar
  16. 16.
    Li, H., Huang, Y., Zhang, Z.: An improved faster r-cnn for same object retrieval. IEEE Access 5, 13665–13676 (2017)CrossRefGoogle Scholar
  17. 17.
    Li, L.-J., Su, H., Fei-Fei, L., Xing, E.P.: Object bank: a high-level image representation for scene classification & semantic feature sparsification. In: Advances in Neural Information Processing Systems, pp. 1378–1386 (2010)Google Scholar
  18. 18.
    Ma, H., Zhu, J., Lyu, M.R.-T., King, I.: Bridging the semantic gap between image contents and tags. IEEE Trans. Multimed. 12(5), 462–473 (2010)CrossRefGoogle Scholar
  19. 19.
    Papadopoulos, G.T., Saathoff, C., Grzegorzek, M., Mezaris, V., Kompatsiaris, I., Staab, S., Strintzis, M.G.: Comparative evaluation of spatial context techniques for semantic image analysis. In: 10th Workshop on Image Analysis for Multimedia Interactive Services. WIAMIS’09, pp. 161–164. IEEE (2009)Google Scholar
  20. 20.
    Weng, C., Wang, H., Yuan, J., Jiang, X.: Discovering class-specific spatial layouts for scene recognition. IEEE Signal Process. Lett. 24(8), 1143–1147 (2017)CrossRefGoogle Scholar
  21. 21.
  22. 22.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Computer Science and EngineeringWalchand College of EngineeringSangliIndia

Personalised recommendations