Advertisement

Sensing Matrices in Compressed Sensing

  • Yuvraj V. ParkaleEmail author
  • Sanjay L. Nalbalwar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1025)

Abstract

One of the most important aspects of compressed sensing (CS) theory is an efficient design of sensing matrices. These sensing matrices are accountable for the required signal compression at the encoder end and its exact or approximate reconstruction at the decoder end. This paper presents an in-depth review of a variety of compressed sensing matrices such as random matrices, deterministic matrices, structural matrices, and optimized sensing matrices used in compressed sensing. Moreover, this paper presents insights into different research gaps which will provide the direction for further research in compressed sensing area.

Keywords

Compressed sensing Sensing matrices Random sensing matrices Deterministic sensing matrices 

References

  1. 1.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baraniuk, R., Davenport, M., Devore, R., Wakin, M.B.: A simple proof of the restricted isometry property for random matrices. Construct. Approx. 28(3), 253–263 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lu, W., Li, W., Kpalma, K., Ronsin, J.: Compressed sensing performance of random Bernoulli matrices with high compression ratio. IEEE Signal Process. Lett. 22(8) (2015)Google Scholar
  5. 5.
    Gilbert, A., Indyk, P.: Sparse recovery using sparse matrices. Proc. IEEE 98(6), 937–947 (2010).  https://doi.org/10.1109/JPROC.2010.2045092CrossRefGoogle Scholar
  6. 6.
    Mamaghanian, H., Khaled, N., Atienza, D., Vandergheynst, P.: Compressed sensing for real-time energy efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011).  https://doi.org/10.1109/tbme.2011.2156795
  7. 7.
    Zhang, J., Gu, Z., Yu, Z., Li, Y.: Energy efficient ECG compression on wireless biosensors via minimal coherence sensing and weighted l1 minimization reconstruction. IEEE J. Biomed. Health Inform. 19(2), 520–528 (2015).  https://doi.org/10.1109/JBHI.2014.2312374CrossRefGoogle Scholar
  8. 8.
    Mitra, U., Emken, A., Lee, S., Li, M., Rozgic, V., Thatte, G., Vathsangam, H., Zois, D.S., Annavaram, M., Narayanan, S., Levorato, M., Spruijt-Metz, D., Sukhatme, G.S.: KNOWME: a case study in wireless body area sensor network design. IEEE Commun. Mag. 50(5), 116–125 (2012)CrossRefGoogle Scholar
  9. 9.
    Zhang, X., Li, S.: Compressed sensing via dual frame based l1-analysis with Weibull matrices. IEEE Signal Process. Lett. 20(3), 265–268 (2013)Google Scholar
  10. 10.
    DeVore, Ronald A.: Deterministic constructions of compressed sensing matrices. J. Complex. 23, 918–925 (2007).  https://doi.org/10.1016/j.jco.2007.04.002MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Applebaum, L., Howard, S.D., Searle, S., Calderbank, R.: Chirp sensing codes: deterministic compressed sensing measurements for fast recovery. Appl. Comput. Harmon. Anal. 26(2), 283–290 (2009).  https://doi.org/10.1016/j.acha.2008.08.002MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Howard, S.D., Calderbank, A.R., Searle, S.J.: A fast reconstruction algorithm for deterministic compressive sensing using second order reed-muller codes. In: 42nd Annual Conference on Information Sciences and Systems (CISS 2008). IEEE, USA, pp. 11–15 (2008).  https://doi.org/10.1109/ciss.2008.4558486
  13. 13.
    Calderbank, R., Howard, S., Jafarpour, S.: Construction of a large class of deterministic sensing matrices that satisfy a statistical isometry property. IEEE J. Sel. Top. Signal Process. 4(2), 358–374 (2010)CrossRefGoogle Scholar
  14. 14.
    Amini, A., Marvasti, F.: Deterministic construction of binary, bipolar and ternary compressed sensing matrices. IEEE Trans. Inf. Theory 57(4), 2360–2370 (2011).  https://doi.org/10.1109/tit.2011.2111670
  15. 15.
    Dimakis, A.G., Smarandache, R., Vontobel, P.O.: LDPC codes for compressed sensing. IEEE Trans. Inf. Theory 58(5), 3093–3114 (2012)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zang, J., Han, G., Fang, Y.: Deterministic construction of compressed sensing matrices from protograph LDPC codes. IEEE Signal Process. Lett. 22(11), 1960–1964 (2015)CrossRefGoogle Scholar
  17. 17.
    Amini, A., Montazerhodjat, V., Marvasti, F.: Matrices with small coherence using p-Ary block codes. IEEE Trans. Signal Process. 60(1), 172–180 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, S., Ge, G.: Deterministic construction of sparse sensing matrices via finite geometry. IEEE Trans. Signal Process. 62(11) (2014)Google Scholar
  19. 19.
    Xia, S.-T., Liu, X.-J., Jiang, Y., Zheng, H.-T.: Deterministic constructions of binary measurement matrices from finite geometry. IEEE Trans. Signal Process. 63(4), 1017–1029 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Xu, G., Xu, Z.: Compressed sensing matrices from Fourier matrices. IEEE Trans. Inf. Theory 61(1), 469–477 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Indyk, P.: Explicit constructions for compressed sensing matrices. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, California, pp. 30–33 (2008)Google Scholar
  22. 22.
    Li, S., Gao, F., Ge, G., Zhang, S.: Deterministic construction of compressed sensing matrices via algebraic curves. IEEE Trans. Inf. Theory 58(8), 5035–5041 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Do, T.T., Gan, L., Nguyen, N.H.: Fast and efficient compressive sensing using structurally random matrices. IEEE Trans. Signal Process. 60(1), 139–154 (2012).  https://doi.org/10.1109/TSP.2011.2170977MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Bajwa, W.U., Haupt, J.D., Raz, G.M., Wright, S.J., Nowak, R.D.: Toeplitz-structured compressed sensing matrices. In: Proceedings of 14th IEEE/SP Workshop on Statistical Signal Processing (SSP 2007), Madison, WI, USA, pp. 294–298 (2007).  https://doi.org/10.1109/ssp.2007.4301266
  25. 25.
    Haupt, J., Bajwa, W.U., Raz, G., Nowak, R.: Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Trans. Inf. Theory 56(11), 5862–5875 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Yin, W., Morgan, S., Yang, J., Zhang, Y.: Practical compressive sensing with Toeplitz and Circulant matrices. In: Proceedings of SPIE 7744, Visual Communications and Image Processing 2010, 77440 K (15 July 2010), Huangshan, China (2010).  https://doi.org/10.1117/12.863527
  27. 27.
    Xu, Y., Yin, W., Osher, S.: Learning circulant sensing kernels. Inverse Problems Imaging 8(3), 901–923 (2014).  https://doi.org/10.3934/ipi.2014.8.901MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Li, K., Ling, C., Gan, L.: Deterministic compressed-sensing matrices: where Toeplitz meets Golay. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Prague, Czech Republic, pp. 3748–3751 (2011)Google Scholar
  29. 29.
    Li, K., Gan, L., Ling, C.: Convolutional compressed sensing using deterministic sequences. IEEE Trans. Signal Process. 61(3), 740–752 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sun, J., Wang, S., Dong, Y.: Sparse block circulant matrices for compressed sensing. IET Commun. 7(13), 1412–1418 (2013)CrossRefGoogle Scholar
  31. 31.
    Li, K., Shuang, C.: State of the art and prospects of structured sensing matrices in compressed sensing. Front. Comput. Sci. 9(5), 665–677 (2015).  https://doi.org/10.1007/s11704-015-3326-8
  32. 32.
    Lee, D., Sasaki, T., Yamada, T., Akabane, K., Yamaguchi, Y., Uehara, K.: Spectrum sensing for networked system using 1-bit compressed sensing with partial random circulant measurement matrices. In: 75th Vehicular Technology Conference (VTC Spring). IEEE, Yokohama, Japan, pp. 1–5 (2012).  https://doi.org/10.1109/vetecs.2012.6240259
  33. 33.
    Salahdine, F., Kaabouch, N., El Ghazi, H.: Bayesian compressive sensing with circulant matrix for spectrum sensing in cognitive radio networks. In: 7th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON). IEEE, New York, NY, USA, pp. 1–6 (2016)Google Scholar
  34. 34.
    Romberg, J.: Compressive sensing by random convolution. SIAM J. Imaging Sci. 2(4), 1098–1128 (2009).  https://doi.org/10.1137/08072975XMathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Li, K., Ling, C., Gan, L.: Deterministic compressed sensing matrices: where Toeplitz meets Golay. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, Prague, Czech Republic, pp. 3748–3751 (2011)Google Scholar
  36. 36.
    Li, K., Gao, S., Ling, C., Gan, L.: Wyner-ziv coding for distributed compressive sensing. In: Proceedings of Sensor Signal Processing for Defence (SSPD 2011), IET, London, UK, pp. 1–5 (2011)Google Scholar
  37. 37.
    Gan, L., Li, K., Ling, C.: Novel Toeplitz sensing matrices for compressive radar imaging. In: International Workshop on Compressed Sensing Applied to Radar (CoSeRa), Bonn, Germany (2012).  https://doi.org/10.13140/2.1.1023.2964
  38. 38.
    Gan, L., Li, K., Ling, C.: Golay meets Hadamard: Golay-paired Hadamard matrices for fast compressed sensing. In: IEEE-Information Theory Workshop (ITW), Lausanne, Switzerland, pp. 637–641 (2012).  https://doi.org/10.1109/itw.2012.6404755
  39. 39.
    Sun, R., Zhao, H., Xu, H.: The application of improved Hadamard measurement matrix in compressed sensing. In: International Conference on Systems and Informatics (ICSAI 2012), Yantai, China, 1994–1997 (2012)Google Scholar
  40. 40.
    Ma, J., Yuan, X., Ping, L.: Turbo compressed sensing with partial DFT sensing matrix. IEEE Signal Process. Lett. 22(2), 158–161 (2015)CrossRefGoogle Scholar
  41. 41.
    Elad, M.: Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2007).  https://doi.org/10.1109/TSP.2007.900760MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Abolghasemi, V., Jarchi, D., Sanei, S.: A robust approach for optimization of the measurement matrix in compressed sensing. In: 2nd International Workshop on Cognitive Information Processing. IEEE, Elba, Italy, pp. 388–392 (2010).  https://doi.org/10.1109/cip.2010.5604134
  43. 43.
    Duarte-carvajalino, J.M., Sapiro, G.: Learning to sense sparse signals: simultaneous sensing matrix and sparsifying dictionary optimization. IEEE Trans. Image Process. 18(7), 1395–1408 (2009)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Pan, J., Qiu, Y.: An orthogonal method for measurement matrix optimization. Circuits Syst. Signal Process. 35(3), 837–849 (2016)Google Scholar
  45. 45.
    Chen, W., Rodrigues, M.R.D.: Dictionary learning with optimized projection design for compressive sensing applications. IEEE Signal Process. Lett. 20(10), 992–995 (2013)Google Scholar
  46. 46.
    Pereira, M.P., Lovisolo, L., da EAB, Silva, de Campos, M.L.R.: On the design of maximally incoherent sensing matrices for compressed sensing using orthogonal bases and its extension for biorthogonal bases case. Digit. Signal Process. 27, 12–22 (2014).  https://doi.org/10.1016/j.dsp.2014.01.006. ElsevierCrossRefGoogle Scholar
  47. 47.
    Rosenblum, K., Zelnik-Manor, L., Eldar, Y.C.: Sensing matrix optimization for block-sparse decoding. IEEE Trans. Signal Process. 59(9), 4300–4312 (2011).  https://doi.org/10.1109/TSP.2011.2159211MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Bao, G., Ye, Z., Xu, X., Zhou, Y.: A compressed sensing approach to blind separation of speech mixture based on a two-layer sparsity model. IEEE Trans. Audio Speech Lang. Process. 21(5), 899–906 (2013)CrossRefGoogle Scholar
  49. 49.
    Defraene, B., Mansour, N., De Hertogh, S., van Waterschoot, T., Diehl, M., Moonen, M.: Declipping of audio signals using perceptual compressed sensing. IEEE Trans. Audio Speech Lang. Process. 21(12), 2627–2637 (2013).  https://doi.org/10.1109/tasl.2013.2281570
  50. 50.
    Giacobello, D., Christensen, M.G., Murthi, M.N., Jensen, S.H., Moonen, M.: Retrieving sparse patterns using a compressed sensing framework: applications to speech coding based on sparse linear prediction. IEEE Signal Process. Lett. 17(1), 103–106 (2010).  https://doi.org/10.1109/LSP.2009.2034560CrossRefGoogle Scholar
  51. 51.
    Giacobello, D., Christensen, M.G., Murthi, M.N., Jensen, S.H., Moonen, M.: Sparse linear prediction and its applications to speech processing. IEEE Trans. Audio Speech Lang. Process. 20(5), 1644–1657 (2012).  https://doi.org/10.1109/TASL.2012.2186807CrossRefGoogle Scholar
  52. 52.
    Wu, D., Zhu, W.-P., Swamy, M.N.S.: The theory of compressive sensing matching pursuit considering time-domain noise with application to speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 22(3), 682–696 (2014)CrossRefGoogle Scholar
  53. 53.
    Griffin, A., Hirvonen, T., Tzagkarakis, C., Mouchtaris, A., Tsakalides, P.: Single-channel and multi-channel sinusoidal audio coding using compressed sensing. IEEE Trans. Audio Speech Lang. Process. 19(5), 1382–1395 (2011).  https://doi.org/10.1109/TASL.2010.2090656CrossRefGoogle Scholar
  54. 54.
    Gemmeke, J.F., Hamme, H.V., Cranen, B., Boves, L.: Compressive sensing for missing data imputation in noise robust speech recognition. IEEE J. Sel. Top. Signal Process 4, 272–287 (2010).  https://doi.org/10.1109/JSTSP.2009.2039171CrossRefGoogle Scholar
  55. 55.
    Abrol, V., Sharma, P., Sao, A.K.: Voiced/nonvoiced detection in compressively sensed speech signals. Speech Commun. 72, 194–207 (2015). ElsevierGoogle Scholar
  56. 56.
    Abrol, V., Sharma, P., Budhiraja, S.: Deterministic compressed-sensing matrix from Grassmannian matrix: application to speech processing. IEEE, Ghaziabad, India, pp. 1165–1170 (2012).  https://doi.org/10.1109/iadcc.2013.6514392
  57. 57.
    Abrol, V., Sharma, P., Budhiraja, S.: Evaluating performance of compressed sensing for speech signals. In: 3rd International Advance Computing Conference (IACC), Ghaziabad. IEEE, India, pp. 1159–1164 (2013)Google Scholar
  58. 58.
    Bhadoria, B.S., Shukla, U., Joshi, A.M.: Comparative analysis of basis & measurement matrices for non-speech audio signal using compressive sensing. In: International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE, Coimbatore, India. pp. 1–5 (2014)Google Scholar
  59. 59.
    Savic, T., Albijanic, R.: CS reconstruction of the speech and musical signals. In: 4th Mediterranean Conference on Embedded Computing (MECO). IEEE, Budva, Montenegro, pp. 299–302 (2015).  https://doi.org/10.1109/meco.2015.7181927
  60. 60.
    Joshi, A.M., Upadhyaya, V.: Analysis of compressive sensing for non stationary music signal. In: International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, Jaipur, India. pp. 1172–1176 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunication EngineeringDr. Babasaheb Ambedkar Technological University (DBATU)RaigadIndia

Personalised recommendations