Advertisement

Influence of Flow Domain Parameters on Hot Water Actuation of Shape-Memory Alloy Spring for Barrier Gate System

  • R MithunEmail author
  • Tameshwer Nath
  • S. S. Mani Prabu
  • I. A. Palani
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

The study concerns the comparison of the experimental and analytical techniques using hot water actuated shape-memory alloy (SMA) spring for energy-efficient barrier gate. Specifically, this script studies the heat transfer analysis of the shape-memory alloy spring, using COMSOL Multiphysics. The actuation rate is one of the important factors for using SMA spring for rapid operation of barrier gates. In hot water actuation, this speed of actuation is influenced by two important parameters, the temperature of the inlet water and the velocity at which the water flows into the system. Parametric sweep for an inlet temperature of 65, 75, and 85 ℃ and velocity rates of 5 and 7 mm/s were studied. The conclusions from this parametric investigation can be used to choose the optimum values for the parameters to achieve the required actuation. The results from the finite element analysis were compared with the experimental results.

Keywords

Shape-memory alloy Nitinol Hot water actuation COMSOL 

References

  1. 1.
    Degeratu, S., Rotaru, P., Rizescu, S., Bîzdoacǎ, N.G.: Thermal study of a shape memory alloy (SMA) spring actuator designed to insure the motion of a barrier structure. J. Therm. Anal. Calorim. 111, 1255–1262 (2013).  https://doi.org/10.1007/s10973-012-2369-4CrossRefGoogle Scholar
  2. 2.
    Lagoudas, D.C.: Shape Mem. Alloys: Model. Eng. Appl. (2008).  https://doi.org/10.1007/978-0-387-47685-8CrossRefGoogle Scholar
  3. 3.
    Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012).  https://doi.org/10.1016/j.matdes.2011.04.065CrossRefGoogle Scholar
  4. 4.
    Jani, J.M, Leary, M., Subic, A., Gibson, M.A.: Review of shape memory alloy research applications and opportunities. Bull. Alloy Phase Diagrams. 1, 93–95 (1980)  https://doi.org/10.3868/s110-003-014-0039-x
  5. 5.
    Elahinia, M.H.: Shape Memory Alloy Actuators : Design, Fabrication, and Experimental Evaluation, (2015)  https://doi.org/10.1002/9781118426913CrossRefGoogle Scholar
  6. 6.
    Huang, W., Toh, W.: Training two-way shape memory alloy by reheat treatment. J. Mater. Sci. Lett. 19, 1549–1550 (2000).  https://doi.org/10.1023/A:1006721022185CrossRefGoogle Scholar
  7. 7.
    Lahoz, R., Gracia-Villa, L., Puértolas, J.A.: Training of the two-way shape memory effect by bending in NiTi alloys. J. Eng. Mater. Technol. 124, 397 (2002).  https://doi.org/10.1115/1.1495001CrossRefGoogle Scholar
  8. 8.
    Benafan, O., Notardonato, W.U., Meneghelli, B.J., Vaidyanathan, R.: Design and development of a shape memory alloy activated heat pipe-based thermal switch. Smart Mater. Struct. 22, (2013)  https://doi.org/10.1088/0964-1726/22/10/105017CrossRefGoogle Scholar
  9. 9.
    Rediniotis, O.K., Lagoudas, D.C., Jun, H.Y., Allen, R.D.: Fuel-powered compact SMA actuator. Proc. SPIE-Int. Soc. Opt. Eng. 4698, 441–453 (2002).  https://doi.org/10.1117/12.475087CrossRefGoogle Scholar
  10. 10.
    Flemming, L., Mascaro, S.: Analysis of hybrid electric/thermofluidic inputs for wet shape memory alloy actuators. Smart Mater. Struct. 22, (2013)  https://doi.org/10.1088/0964-1726/22/1/014015CrossRefGoogle Scholar
  11. 11.
    Megnin, C., Kohl, M.: Shape memory alloy microvalves for a fluidic control system. J. Micromech. Microeng. 24, (2014)  https://doi.org/10.1088/0960-1317/24/2/025001CrossRefGoogle Scholar
  12. 12.
    Haga, Y., Mizushima, M., Matsunaga, T., Esashi, M.: Medical and welfare applications of shape memory alloy microcoil actuators. Smart Mater. Struct. 14, (2005)  https://doi.org/10.1088/0964-1726/14/5/015CrossRefGoogle Scholar
  13. 13.
    Paik, J.K., Hawkes, E., Wood, R.J.: A novel low-profile shape memory alloy torsional actuator. Smart Mater. Struct. 19, (2010)  https://doi.org/10.1088/0964-1726/19/12/125014CrossRefGoogle Scholar
  14. 14.
    Velázquez, R., Pissaloux, E.E.: Modelling and temperature control of shape memory alloys with fast electrical heating. Int. J. Mech. Control. 13(2), (2012), ISSN: 1590-8844Google Scholar
  15. 15.
    Zanotti, C., Giuliani, P., Tuissi, A., Arnaboldi, S., Casati, R.: Response of NiTi SMA wire electrically heated. In ESOMAT 2009-8th Eur. Symp. Martensitic Transform (p. 06037). (2009) 1–7  https://doi.org/10.1051/esomat/200906037
  16. 16.
    Yang, S.Y., Kang, S.W., Lim, Y.M., Lee, Y.J., Kim, J.I., Nam, T.H: Temperature profiles in a Ti-45 Ni-5Cu (at%) shape memory alloy developed by the Joule heating. J. Alloys Compd. 490, 28–32 (2010)  https://doi.org/10.1016/j.jallcom.2009.10.069CrossRefGoogle Scholar
  17. 17.
    Bhargaw, H.N., Ahmed, M.P., Sinha, M.: Thermo-electric behaviour of NiTi shape memory alloy. Trans. Nonferrous Met. Soc. China English Ed. 23, 2329–2335 (2013)  https://doi.org/10.1016/s1003-6326(13)62737-5CrossRefGoogle Scholar
  18. 18.
    Zaidi, S., Lamarque, F., Prelle, C., Carton, O., Zeinert, A.: Contactless and selective energy transfer to a bistable micro-actuator using laser heated shape memory alloy. Smart Mater. Struct. 21, (2012)  https://doi.org/10.1088/0964-1726/21/11/115027CrossRefGoogle Scholar
  19. 19.
    Paik, J.K., Wood, R.J.: A bidirectional shape memory alloy folding actuator. Smart Mater. Struct. 21, (2012)  https://doi.org/10.1088/0964-1726/21/6/065013CrossRefGoogle Scholar
  20. 20.
    Carton, O., Lejeune, M., Lamarque, F., Zaidi, S., Zeinert, A.: Thermo-mechanical characterization of optical thin films filters deposited onto shape memory alloy micro-actuators. Smart Mater. Struct. 23, (2014)  https://doi.org/10.1088/0964-1726/23/12/125035CrossRefGoogle Scholar
  21. 21.
    Perez-Zúñiga M.G., et al.: Enhanced photomechanical response of a Ni-Ti shape memory alloy coated with polymer-based photothermal composites. Smart Mater. Struct. 26, 105012 (2017)  https://doi.org/10.1088/1361-665X/aa80cbCrossRefGoogle Scholar
  22. 22.
    Hu, Z., Kanth, B.R., Tamang, R., Varghese, B., Sow, C.H., Mukhopadhyay, P.K.: Visible microactuation of a ferromagnetic shape memory alloy by focused laser beam. Smart Mater. Struct. 21, (2012)  https://doi.org/10.1088/0964-1726/21/3/032003CrossRefGoogle Scholar
  23. 23.
    Qiu, T.Q., Tien, C.L.: Short-pulse laser heating on metals. Int. J. Heat and Mass Transfer 35(3), 719–726 (1992)  https://doi.org/10.1016/0017-9310(92)90131-BCrossRefGoogle Scholar
  24. 24.
    Chouhan, P., Nath, T., Lad, B.K., Palani, I.A.: Investigation on actuation and thermo-mechanical behaviour of shape memory alloy spring using hot water. IOP Conf. Ser. Mater. Sci. Eng. 149, (2016)  https://doi.org/10.1088/1757-899x/149/1/012147CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Mechanical EngineeringA.C. Government College of Engineering and TechnologyChennaiIndia
  2. 2.Mechanical EngineeringIndian Institute of Technology IndoreIndoreIndia
  3. 3.Metallurgy Engineering and Materials ScienceIndian Institute of Technology IndoreIndoreIndia

Personalised recommendations