Advertisement

Fluidized Bed Hot Abrasive Jet Machining (FB-HAJM) of K-60 Alumina Ceramic

  • B. K. NandaEmail author
  • A. Mishra
  • Sudhansu Ranjan Das
  • D. Dhupal
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)

Abstract

This paper is focused on machining of hard and brittle K-60 alumina ceramic composite material which is widely used as an important insulator in electrical components. The combined effect of hot silicon carbide abrasive particles with compressed air is investigated on technological response parameters after passing the mixture through the fluidized bed abrasive jet machining (FB-AJM) setup. The effect of different machining parameters on material removal rate (MRR), depth of cut (DOC), and surface roughness (Ra) is studied and analyzed. Experiments are conducted according to Box–Behnken design of experiment of response surface methodology to develop quadratic regression models for responses and the model adequacies are confirmed by analysis of variance (ANOVA). The SEM micrograph analysis of the machined composite surface is performed to reveal the plastic deformations. The methodology described here is expected to be highly beneficial to manufacturing industries.

Keywords

Alumina ceramic FB-HAJM Response surface SEM 

References

  1. 1.
    Jafar, R.H.M., Spelt, J.K., Papini, M.: Numerical simulation of surface roughness and erosion rate of abrasive jet micro-machined channels. Wear 303, 302–312 (2013)CrossRefGoogle Scholar
  2. 2.
    Getu, H., Spelt, J.K., Papini, M.: Conditions leading to the embedding of angular and spherical particles during the solid particle erosion of polymers. Wear 292, 159–168 (2012)CrossRefGoogle Scholar
  3. 3.
    Ally, S., Spelt, J.K., Papini, M.: Prediction of machined surface evolution in the abrasive jet micro-machining of metals. Wear 292, 89–99 (2012)CrossRefGoogle Scholar
  4. 4.
    Pang, K.L., Nguyen, T., Fan, J., Wang, J.: A study of micro-channeling on glasses using an abrasive slurry jet. Mach. Sci. Technol. 16, 547–563 (2012)CrossRefGoogle Scholar
  5. 5.
    Ibraheem, H.M.A., Iqbal, A., Hashemipour, M.: Numerical optimization of hole making in GFRP composite using abrasive water jet machining process. J. Chin. Inst. Eng. 38, 66–76 (2015)CrossRefGoogle Scholar
  6. 6.
    Li, W., Zhu, H., Wang, J., Ali, Y.M., Huang, C.: An investigation into the radial-mode abrasive waterjet turning process on high tensile steels. Int. J. Mech. Sci. 77, 365–376 (2013)CrossRefGoogle Scholar
  7. 7.
    Cárach, J., Hloch, S., Hlaváček, P., Ščučka, J., Martinec, P., Petrŭ, J., Zlámal, T., Zeleňák, M., Monka, P., Lehocká, D.: Tangential turning of Incoloy alloy 925 using abrasive water jet technology. Int. J. Adv. Manuf. Technol. 82, 1747–1752 (2016)CrossRefGoogle Scholar
  8. 8.
    Routara, B.C., Nanda, B.K., Sahoo, A.K., Thatoi, D.N., Nayak, B.B.: Optimisation of multiple performance characteristics in abrasive jet machining using grey relational analysis. Int. J. Manuf. Technol. Manage. 24, 4–22 (2011)CrossRefGoogle Scholar
  9. 9.
    Nanda, B.K., Mishra, A., Dhupal, D.: Fluidized bed abrasive jet machining (FB-AJM) of K-99 alumina ceramic using SiC abrasives. Int. J. Adv. Manuf. Technol. 90, 3655–3672 (2017)CrossRefGoogle Scholar
  10. 10.
    Jagannatha, N., Somashekhar, S.H., Sadashivappa, K., Arun, K.V.: Machining of soda lime glass using abrasive Hot Air Jet: An experimental Study. Mach. Sci. Technol. 16, 459–472 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • B. K. Nanda
    • 1
    Email author
  • A. Mishra
    • 2
  • Sudhansu Ranjan Das
    • 3
  • D. Dhupal
    • 3
  1. 1.School of Mechanical EngineeringKIIT UniversityBhubaneswarIndia
  2. 2.Department of Mechanical EngineeringIITGuwahatiIndia
  3. 3.Department of Production EngineeringVSS University of TechnologyBurlaIndia

Personalised recommendations